Maximum Lilkelilhood

Estimation

Suppose that we have observed values $t_{1}, t_{2}, \ldots t_{n}$ of a random variable T.

Suppose also that the distribution of T is known to belong to a certain type (e.g., exponential, normal, etc.)
but the vector $\theta=\left(\theta_{1}, \theta_{2}, \ldots \theta_{p}\right)$ of unknown parameters associated with it is unknown (where p is the number of unknown parameters).

Let the density function be written as $f(t ; \theta)$.
For example, if Thas Normal distribution,

$$
f(t ; \mu, \sigma)=\frac{1}{\sigma \sqrt{2 \pi}} \exp \left\{-\frac{1}{2}\left(\frac{t-\mu}{\sigma}\right)^{2}\right\}
$$

(where $\theta_{1}=\mu \& \theta_{2}=\sigma$ have yet to be determined.)

We want to estimate the unknown parameters by choosing those values of θ which make the likelihood of the observed values as large as possible.

Other alternative methods:

- method of moments: choose θ so that the moments of $f(t ; \theta)$ are equal to those of the sample (e.g., match the sample mean and sample variance).
- use regression analysis, i.e., curve-fitting, to choose θ so as to minimize the sum of the squared errors in the nonlinear system of equations:

$$
\left\{\begin{array}{l}
1 / n=F\left(t_{1} ; \theta\right) \\
2 / n=F\left(t_{2} ; \theta\right) \quad \text { where } F \text { is the } C D F \text { of the dist'n } \\
\vdots \\
n / n=F\left(t_{n} ; \theta\right)
\end{array}\right.
$$

(This is generally an unconstrained nonlinear minimization problem which must be solved by an iterative algorithm, although often transformations can be applied to obtain a linear system which can then be solved easily.)

Maximum Likelihood Estimation (MLE)

Consider first the case in which T is discrete.
A simple example, with a not-at-all surprising result:
Suppose that a Bernouilli random variable is sampled, i.e., $t_{i} \in\{0,1\}$ for each $i=1,2, \ldots n$.

The number of "successes" is known to have a binomial distribution with parameter $p=$ probability of "success". Suppose that the number of successes in the sample, i.e., $\sum_{i=1}^{n} t_{i}$, be \boldsymbol{k}.

What then should be our estimate of p ?

The probability, or likelihood, of \boldsymbol{k} successes in n trials, if T is a Bernouilli random variable, is

$$
L(p)=\binom{n}{k} p^{k}(1-p)^{n-k}
$$

(which has been written as a function of the unknown parameter p.)

The maximum likelihood estimate of p is the value which maximizes the function $L(p)$.
solution: consider the stationary points of L :

$$
\frac{d L}{d p}=\binom{n}{k}\left[k p^{k-1}(1-p)^{n-k}+p^{k}(n-k)(1-p)^{n-k-1}(-1)\right]=0
$$

$$
\frac{d L}{d p}=\binom{n}{k} p^{k-1}(1-p)^{n-k-1}[k(1-p)-p(n-k)]=0
$$

One of the factors must be zero in the solution, so the three solutions are:

$$
\begin{aligned}
& p=0 \\
& (1-p)=0 \quad \Rightarrow p=1
\end{aligned}
$$

or

$$
k(1-p)-p(n-k)=0 \Rightarrow k-k p-n p+k p=k-n p=0 \Rightarrow p=k / n
$$

Obviously the first two solutions, i.e. $p=0 \& 1$, do not maximize the function L, while the third solution is what we would have expected to be the MLE!

Consider now the case in which T does not have a discrete distribution, and $f(t ; \theta)$ is its density function.

Since the observed values are independent, the likelihood function $L(t, \theta)$ is the product of the probability density function evaluated at each observed value:

$$
L(t, \theta)=\prod_{i=1}^{n} f\left(t_{i} ; \theta\right)
$$

The maximum likelihood estimator $\hat{\theta}$ is found by maximizing $L(t, \theta)$ with respect to θ. Thus $\hat{\theta}$ corresponds to the distribution that is most likely to have yielded the observed data $t_{1}, t_{2}, \ldots t_{n}$.

The problem

$$
\underset{\theta}{\operatorname{Maximize}} L\left(t_{1}, \ldots t_{n} ; \theta\right)
$$

is a nonlinear optimization problem which might be solved by any appropriate NLP algorithm (Newton or quasi-Newton methods, the conjugate gradient method, etc.)

For computational convenience, it's usually preferable to maximize the logarithm of the maximum likelihood (which will yield the same maximizing $\hat{\theta}$):

$$
\underset{\theta}{\text { Maximize }} \ln L\left(t_{1}, \ldots t_{n} ; \theta\right)
$$

i.e., because $\ln L(t ; \theta)=\ln \prod_{i=1}^{n} f\left(t_{i} ; \theta\right)=\sum_{i=1}^{n} \ln f\left(t_{i} ; \theta\right)$
we solve the problem:

$$
\underset{\theta}{\operatorname{Maximize}} \sum_{\mathrm{i}=1}^{\mathrm{n}} \ln f\left(t_{i} ; \theta\right)
$$

Example: Exponential Distribution

(another not-so-surprising result)

The probability density function ($p d f$) of the exponential distribution with parameter λ is

$$
f(t ; \lambda)=\lambda e^{-\lambda t}
$$

We have a set of n observations $t_{1}, t_{2}, \ldots t_{n}$. What is the value of the parameter λ which makes this set of observations most likely?

Sample data: Times to failure of six electronic components are (in hours):

25, 75, 150, 230, 430, and 700.

Solution: The likelihood function is

$$
L\left(t_{1}, \ldots t_{n} ; \lambda\right)=\prod_{i=1}^{n} \lambda e^{-\lambda t_{i}}=\lambda^{n} \exp \left\{-\lambda \sum_{i=1}^{n} t_{i}\right\}
$$

The logarithm of the likelihood is

$$
\ln L(t ; \lambda)=n \log \lambda-\lambda \sum_{i=1}^{n} t_{i}
$$

which has derivative

$$
\frac{d}{d \lambda} L(t ; \lambda)=\frac{n}{\lambda}-\sum_{i=1}^{n} t_{i}
$$

In the case, then, we can solve the nonlinear optimization problem (with one variable) by finding a stationary point, i.e., a value of λ for which the above derivative is zero.

$$
\begin{aligned}
& \frac{d}{d \lambda} L(t ; \lambda)=\frac{n}{\hat{\lambda}}-\sum_{i=1}^{n} t_{i}=0 \\
& \Rightarrow \frac{1}{\hat{\lambda}}=\frac{1}{n} \sum_{i=1}^{n} t_{i} \\
& \Rightarrow \hat{\lambda}=\frac{n}{\sum_{i=1}^{n} t_{i}}
\end{aligned}
$$

That is, in the case of the exponential distribution, the MLE is (surprise!) simply
the reciprocal of the average of the observed values.
That is, for the sample data,

$$
\hat{\lambda}=\frac{6 \text { failures }}{(25+75+150+230+430+700) \mathrm{hrs}}=\frac{6 \text { failures }}{1610 \mathrm{hrs}}=0.0037267 \text { failures } \mathrm{hr} .
$$

In the case of the normal distribution (with two parameters, $\mu \& \sigma)$, the optimality conditions for maximum of the log likelihood is a pair of nonlinear equations, but again they can be solved in closed form, and the results are as one might expect:

- the MLE for μ is the average of the observations, and
- the MLE for σ is the square root of the sample variance.

In general, however, one cannot find a closed-form solution for the maximim likelihood estimator(s), requiring an iterative algorithm. (For example, MLE for Weibull \& Gumbel distributions.)

Maximum Likelihood Estimation

with "censored" data

Suppose that an experiment was terminated at time τ after only r of the n units in a lifetest had failed. This is accounted for by defining the likelihood as

$$
L(t, \theta)=[1-F(\tau ; \theta)]^{n-r} \times \prod_{i=1}^{r} f\left(t_{i} ; \theta\right)
$$

since
$[1-F(\tau ; \theta)]^{n-r}$ is the probability that the $n-r$ units survive until time τ.

Since

$$
L(t, \theta)=[1-F(\tau ; \theta)]^{n-r} \times \prod_{i=1}^{r} f\left(t_{i} ; \theta\right)
$$

the log-likelihood function is therefore

$$
\ln L(t ; \theta)=(n-r) \ln [1-F(t ; \theta)]+\sum_{i=1}^{r} \ln f\left(t_{i} ; \theta\right)
$$

Generally, this is maximized either

- by solving the optimality conditions

$$
\frac{\partial}{\partial \theta_{i}} \ln L(t ; \theta)=0 \quad \text { for } \quad i=1,2, \ldots p
$$

- by an iterative optimization algorithm (e.g. QuasiNewton)

