Sets in LINGO

Dennis Bricker
Dept of Mechanical & Industrial Engineering
The University of Iowa

LINGO sets
9/3/2002
LINGO, as do other modeling languages (e.g. MPL, AMPL, GAMS), allows you to group similar objects together in sets.

A single statement in LINGO can then apply to all members of the set.

Each member of a set may have one or more attributes, which can be known quantities or values to be determined by the optimization.
LINGO sets can be

- **primitive**, by specifying

 - name of the set

 - member list

 - attributes, if any

 example: WAREHOUSE / LAX ORD SFO NYC /: CAPACITY

 - set name
 - member list
 - attribute

- **derived** (formed from one or more other sets) using

 - selection of a subset

 - Cartesian product (cross product)

 example: WAREHOUSE / LAX ORD SFO NYC /:CAPACITY;
 OUTLET / 1..6/: DEMAND;
 ROUTE(WAREHOUSE,OUTLET): COST, X;

 - derived set
 - parent sets
 - attributes
DATA section

- assigns values to some of the attributes
- isolates data from rest of the model

example:

```plaintext
DATA:
  CAPACITY = 300 450 400 625;
  DEMAND = 225 310 290;
  COST = 2.10 1.85 2.75 2.05 1.70 1.95
         1.45 1.75 2.30 2.05 1.55 1.60
         1.20 1.90 1.65 2.10 1.35 1.80;
ENDDATA
```
SET LOOPING functions

<table>
<thead>
<tr>
<th>Function</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>@FOR</td>
<td>generates constraints over members of set</td>
</tr>
<tr>
<td>@SUM</td>
<td>sum of expression over members of set</td>
</tr>
<tr>
<td>@MIN</td>
<td>minimum of expression over members of set</td>
</tr>
<tr>
<td>@MAX</td>
<td>maximum of expression over members of set</td>
</tr>
</tbody>
</table>

example:

```
@FOR (OUTLET (J) :
    @SUM (WAREHOUSE (I) : X (I, J ) ) >= DEMAND (J ) );
```
Example: A 6-Warehouse & 8-Vendor Transportation Problem

SETS:
WAREHOUSES / WH1 WH2 WH3 WH4 WH5 WH6/: CAPACITY;
VENDORS / V1 V2 V3 V4 V5 V6 V7 V8/: DEMAND;
LINKS(WAREHOUSES, VENDORS): COST, VOLUME;
ENDSETS

DATA:
CAPACITY = 60 55 51 43 41 52;
DEMAND = 35 37 22 32 41 32 43 38;
COST = 6 2 6 7 4 2 5 9
 4 9 5 3 8 5 8 2
 5 2 1 9 7 4 3 3
 7 6 7 3 9 2 7 1
 2 3 9 5 7 2 6 5
 5 5 2 2 8 1 4 3;
ENDDATA
! The objective;
 MIN = @SUM(LINKS(I, J): COST(I, J) * VOLUME(I, J));
! The demand constraints;
 @FOR(VENDORS(J):
 @SUM(WAREHOUSES(I): VOLUME(I, J)) = DEMAND(J));
! The capacity constraints;
 @FOR(WAREHOUSES(I):
 @SUM(VENDORS(J): VOLUME(I, J)) <= CAPACITY(I));
END
Example: An integer LP problem

SETS:

 PLANES/ ROCKET, METEOR, STREAK, COMET, JET, BIPLANE/:
 PROFIT, SETUP, QUANTITY, BUILD;
 RESOURCES/ STEEL, COPPER, PLASTIC, RUBBER, GLASS, PAINT/:
 AVAILABLE;

 RXP(RESOURCES, PLANES): USAGE; ! derived set

ENDSETS

DATA:

 PROFIT = 30 45 24 26 24 30;
 SETUP = 35 20 60 70 75 30;
 AVAILABLE = 800 1160 1780 1050 1360 1240;
 USAGE = 1 4 0 4 2 0
 4 5 3 0 1 0
 0 3 8 0 1 0
 2 0 1 2 1 5
 2 4 2 2 2 4
 1 4 1 4 3 4;

ENDDATA
Maximize profits minus setup costs

\[
\text{MAX} = \sum (\text{PLANES}: \text{PROFIT} \times \text{QUANTITY} - \text{SETUP} \times \text{BUILD});
\]

@FOR(RESOURCES(I):
 \sum (\text{PLANES(J)}: \text{USAGE(I, J)} \times \text{QUANTITY(J)}) \leq \text{AVAILABLE(I)});

@FOR(PLANES: \text{QUANTITY} \leq 400 \times \text{BUILD};
@BIN(\text{BUILD}) \quad \text{BINARY (YES/NO) DECISION TO BUILD}
);

@FOR(PLANES:
 \text{GIN(QUANTITY)} \quad \text{INTEGER RESTRICTIONS ON \# PLANES BUILT}
);

END