The Linear Assignment Problem and its dual:Primal Problem:Dual Problem:

$$Min \sum_{i=1}^{n} \sum_{j=1}^{n} C_{ij} X_{ij}$$

$$s.t. \sum_{j=1}^{n} X_{ij} = 1 \quad \forall i = 1, 2, \dots n$$

$$\sum_{i=1}^{n} X_{ij} = 1 \quad \forall j = 1, 2, \dots n$$

$$X_{ij} \ge 0 \quad \forall i \& j$$

$$Max \quad \sum_{i=1}^n u_i + \sum_{j=1}^n v_j$$

s.t.
$$u_i + v_j \le C_{ij} \quad \forall i \& j$$

(*u* & *v* are unrestricted in sign)

©Dennis L. Bricker Dept of Mechanical & Industrial Engineering The University of Iowa

Complementary Slackness Theorem:

Suppose that \hat{x} and \hat{y} are *feasible* solutions in the primal (**P**) and dual (**D**) problems, respectively:

max $b^T y$		min cx
t. $A^T y \leq c^T$	D: <i>s.t</i> .	s.t. $Ax \ge b$
$y \ge 0$		$x \ge 0$

Then \hat{x} and \hat{y} are each *optimal* in their respective problems **P** and **D** *if and only if*:

- whenever a constraint of one problem is slack, then the corresponding variable of the other problem is zero;
- whenever a variable of one problem is positive, then the corresponding constraint in the other problem must be tight.

જા અસ્વ અસ્વ અસ્વ અસ્વ અ

The *Complementary Slackness Theorem* can be used to prove that any solution found by the Hungarian algorithm must be *optimal*:

a. Let \hat{X} be the (*feasible*) solution found by the Hungarian method.

b. Let \hat{u}_i and \hat{v}_j be the cumulative quantities subtracted from row *i* and column *j*, respectively.

Then the contents of cell (i,j) of the current matrix in the Hungarian algorithm is

$$C_{ij} - \hat{u}_i - \hat{v}_j \ge 0 \qquad \Longrightarrow \qquad \hat{u}_i + \hat{v}_j \le C_{ij}$$

that is, (\hat{u}, \hat{v}) will be *feasible* in the dual problem.

Furthermore, we have chosen \hat{X} so that

$$\hat{C}. \qquad \hat{X}_{ij} > 0 \quad (i.e.,=1) \quad \Rightarrow \quad C_{ij} - \hat{u}_i - \hat{v}_j = 0$$

and

$$d. \qquad C_{ij} - \hat{u}_i - \hat{v}_j > 0 \quad \Rightarrow \quad \hat{X}_{ij} = 0$$

The remaining conditions of the *Complementary Slackness Theorem* are satisfied trivially, since

e. there are no slack constraints in the primal f. whether \hat{u}_i or \hat{v}_j are positive or zero, the corresponding constraint (an equation) must be tight. Since \hat{X} and (\hat{u}, \hat{v}) are both feasible and satisfy all conditions of the *Complementary Slackness Theorem*, they must therefore both be *optimal* solutions!

Furthermore, the Fundamental Duality Theorem of LP implies that if \hat{X} and (\hat{u}, \hat{v}) are optimal, then

$$\sum_{i=1}^{n} \sum_{j=1}^{n} C_{ij} \hat{X}_{ij} = \sum_{i=1}^{n} \hat{u}_{i} + \sum_{j=1}^{n} \hat{v}_{j}$$

i.e., the optimal cost of the assignment problem may be evaluated either by

summing C_{ij} for which $\hat{X}_{ij} = 1$ or summing the dual variables (if you have kept a cumulative record of them.)