Covering Problems in Facility Location

- Minimum cost covering

covering is mandatory,
number or cost of facilities is to be minimized

- Maximal cover
number or cost of facilities is fixed amount of coverage is to be maximized

Given Data:

m customers to be covered, n candidate locations
$a_{i j}= \begin{cases}1 & \text { if facility at } j \text { covers customer } i \\ 0 & \text { otherwise }\end{cases}$
$C_{j}=$ cost of set j

DECISION VARIABLES:

$$
X_{j}= \begin{cases}1 & \text { if set } j \text { is included in the cover } \\ 0 & \text { otherwise }\end{cases}
$$

The Minimum Cost Covering Problem makes coverage mandatory, and uses the standard Set Covering Problem (SCP) model:

- Minimize the cost (or number) of facilities
- Require that every customer be covered at least once

This model is often applied to the location of public facilities, where a certain level of service must be guaranteed to all "customers", as in

- hospitals
- fire stations
- ambulances
- schools

Given: $\quad C_{j}=$ cost of facility j (1 if minimizing the number of facilities)

$$
a_{i j}= \begin{cases}1 & \text { if customer } i \text { is covered by facility } j \\ 0 & \text { otherwise }\end{cases}
$$

Often $a_{i j}$ is defined in terms of a distance parameter S :

$$
a_{i j}= \begin{cases}1 & \text { if distance from facility } j \text { to customer } i \text { is } \leq S \\ 0 & \text { otherwise }\end{cases}
$$

In this case, distance must be clearly defined:

- distance in network
- travel time in network
- Euclidean distance
- Rectilinear (Manhattan) distance etc.

Define decision variables:

$$
X_{j}= \begin{cases}1 & \text { if facility } j \text { is selected } \\ 0 & \text { otherwise }\end{cases}
$$

$$
\begin{array}{ll}
\text { SCP: } & \text { Minimize } \sum_{j=1}^{n} \mathrm{C}_{\mathrm{j}} X_{j} \\
& \text { subject to: } \\
& \text { for all } i=1,2, \ldots m, \quad \sum_{j=1}^{n} a_{i j} X_{j} \geq 1 \\
& \text { for all } j=1,2, \ldots n, \quad X_{j} \in\{0,1\}
\end{array}
$$

The Maximal Coverage Location Problem (MCLP)

- the cost or number of facilities is restricted
- coverage of customers (or demand) is not mandatory, but is maximized

This type of model is most often applied to profit-seeking or private enterprises.

DECISION VARIABLES:

$$
\begin{aligned}
& X_{j}= \begin{cases}1 & \text { if set } j \text { is included in the cover } \\
0 & \text { otherwise }\end{cases} \\
& Y_{i}= \begin{cases}1 & \text { if coverage of customer } i \text { is required } \\
0 & \text { otherwise }\end{cases}
\end{aligned}
$$

Given Data:

m customers to be covered, n candidate locations
$a_{i j}= \begin{cases}1 & \text { if facility at } j \text { covers customer } i \\ 0 & \text { otherwise }\end{cases}$
$C_{j}=$ cost of set j
$B=$ capital budget
$D_{j}=$ demand generated by (or population of) customer i

The budget constraint is $\sum_{j=1}^{n} C_{j} X_{j} \leq B$
or, if we are restricting the number of facilities to p,

$$
\begin{aligned}
& \sum_{j=1}^{n} X_{j} \leq p \\
& \text { i.e., } C_{j}=1 \text { and } B=p
\end{aligned}
$$

The coverage constraint is

$$
\text { for each customer } i=1,2, \ldots m, \quad \sum_{j=1}^{n} a_{i j} X_{j} \geq Y_{i}
$$

The objective is maximize $\sum_{i=1}^{m} D_{i} Y_{i}$
or, if we are maximizing the number of customers covered,

$$
\operatorname{maximize} \sum_{i=1}^{m} Y_{i} \text {, i.e., } D_{i}=1
$$

MCLP: Maximize $\sum_{i=1}^{m} D_{i} Y_{i}$
subject to

$$
\begin{array}{ll}
\sum_{j=1}^{n} C_{j} X_{j} \leq B & \\
\sum_{j=1}^{n} a_{i j} X_{j} \geq Y_{i} & \text { for all } i=1,2, \ldots m \\
X_{j} \in\{0,1\} & \text { for all } j=1,2, \ldots n \\
Y_{i} \in\{0,1\} & \text { for all } i=1,2, \ldots m
\end{array}
$$

Other variations:

- Finite facility capacity, restricting the amount of demand that a facility may serve.
- Number of customers to be double-served is included in objective, especially in order to break ties among multiple optimal solutions.
- Differentiation, i.e., the facilities provide an identical service or product.

A mobile phone operator wants to provide service to a currently uncovered geographical region. Seven locations are being considered for installation for towers for this purpose.

Because of the distances and obstacles such as mountains and tall buildings, each tower can serve only a small number of the twelve communities in the region. Furthermore, the costs of building towers depends upon the site.

The following table gives the following information: an " X " indicating that a tower covers a community; the population (in thousands) of each community; the cost (in US\$ millions) of purchasing the land and building the tower.

site community \downarrow	A	B	C	D	E	F	G	H	I	J	Pop. (K)
1	X			X							2
2	X	X								X	4
3		X	X							X	3
4				X			X				3
5	X			X	X					X	5
6			X		X				X	X	6
7				X		X	X				2
8				X	X		X				7
9					X		X	X	X		6
10								X	X		5
11						X	X	X			4
12							X	X	X		3
$\operatorname{Cost}(\mathrm{US} \$ \mathrm{M})$	0.8	0.6	0.9	1.4	1.4	1.2	1.6	0.9	0.8	0.8	

SCP: The mobile telephone company wishes to cover all the communities at the lowest cost of constructing the towers.

Where should be towers be placed?

MCLP: Suppose that the telephone company has a budget of US\$3 million and wants to provide service to as many customers as possible. Where should the towers be placed?

```
MODEL: ! Set covering problem - LINGO model #1;
```

```
SETS:
    COMMUNITY/1..12/:POP; ! Communities to be covered;
    TOWER/1..10/:COST,X; ! Towers which can be built;
    COVER(COMMUNITY,TOWER):A;
ENDSETS
```

DATA:
POP= $243356276443 ;$! Population of communities;
COST= 0.8 .6 0.9 1.4 1.4 1.2 1.6 0.9 0.8 0.8; ! Cost of towers;
A = 1001000000 ! Coverage matrix ;
1100000001 !(row per community, column per tower);
0110000001
0001001000
1001100001
0010100011
0001011000
0001101000
0000101110
0000000110
0000011100
$0000001110 ;$
ENDDATA

```
MIN = @SUM(TOWER(J): COST(J)*X(J) );
@FOR(COMMUNITY(I):
    @SUM(TOWER(J): A(I,J)*X(J) ) >= 1;
        );
@FOR(TOWER(J): @BIN(X(J)); ! Specify that X is binary;
    );
END
```

Global optimal solution found:

Variable	Value	Reduced Cost
X(4)	1.000000	1.400000
X(8)	1.000000	0.9000000
X(10)	1.000000	0.8000000

An alternative model which allows a specification of the coverage matrix which is less prone to error:


```
DATA:
    POP= 2 4 3 3 5 6 2 7 6 4 4 3; ! Population of communities;
    COST= 0.8 .6 0.9 1.4 1.4 1.2 1.6 0.9 0.8 0.8; ! Cost of towers;
ENDDATA
MIN = @SUM(TOWER(J): COST(J)*X(J) );
@FOR(COMMUNITY(I):
    @SUM(COVER(I,J): X(J) ) >= 1;
        );
@FOR(TOWER(J): @BIN(X(J)); ! Specify that X is binary;
END
```

II. Suppose that the telephone company has a budget of US\$3 million and wants to provide service to as many customers as possible. Where should the towers be placed?

Define decision variables:
For each $j=1,2, \ldots 10$:

$$
X_{j}= \begin{cases}1 & \text { if tower } j \text { is built } \\ 0 & \text { otherwise }\end{cases}
$$

For each $i=1,2, \ldots 12$:

$$
Z_{i}= \begin{cases}1 & \text { if community } i \text { is covered } \\ 0 & \text { otherwise }\end{cases}
$$

Objective:

Maximize $\sum_{i=1}^{12} P_{i} Z_{i}$

Constraints:

Maximum

 CoverFor each community $i=1,2, \ldots 12$:

$$
Z_{i} \leq \sum_{j=1}^{10} a_{i j} X_{j}
$$

$$
\text { This forces } Z_{i}=0 \text { if } \sum_{j=1}^{10} a_{i j} X_{j}=z e r o .
$$

Because of the objective, Z_{i} will be as large as possible,

$$
\text { i.e, 1, if } \sum_{j=1}^{10} a_{i j} X_{j} \geq 1
$$

For all $i \& j: \quad Z_{i} \in\{0,1\} \quad \& \quad X_{j} \in\{0,1\}$

MODEL: ! Maximum covering problem;

SETS:

COMMUNITY/1..12/:POP,Z;
TOWER/1..10/:COST, X;
COVER(COMMUNITY, TOWER)/
1,1 1,4
2,1 2,2
2,10
3,1 3,2
3,10
4,4 4,7
5,1 5,4
6,3 6,
5,10
6,3 6,5 6,9
6,10
7,4 7,6 7,7
8,4 8,5 8,7
9,5 9,7 9,8
9, 9
10,8 10,9
11, 6 11,7 11, 8
12,7 12,8 12,9/;
ENDSETS
! Communities;
! Towers which can be built;
! List of elements in Cover matrix;

DATA:
POP= $243356276443 ;$! Population of communities;
COST= 0.8 .6 0.9 1.4 1.4 1.2 1.6 0.9 0.8 0.8; ! Cost of towers;
ENDDATA

```
BUDGET = 3;
MAX = @SUM(COMMUNITY(I): POP(I)*Z(I) );
@SUM(TOWER(J): COST(J)*X(J) ) <= BUDGET ;
@FOR(COMMUNITY(I):
    @SUM(COVER(I,J): X(J) ) >= Z(I);
);
@FOR(TOWER(J): @BIN(X(J));
    );
@FOR(COMMUNITY(I): @BIN(Z(I));
    );
END
```


The generated model:

```
MAX 2 Z( 1) + 4 Z( 2) + 3 Z( 3) + 3 Z( 4) + 5 Z( 5) + 6 Z( 6)
    + 2Z( 7) + 7 Z( 8) + 6 Z( 9) + 4 Z( 10) + 4 Z( 11) + 3 Z( 12)
SUBJECT TO
2] . 8 X( 1) + .6 X( 2) + . 9 X( 3) + 1.4 X( 4) + 1.4 X( 5) + 1.2 X( 6)
    + 1.6 X( 7) + .9 X( 8) + .8 X( 9) + .8 X( 10) <= 3
3] X( 1) + X( 4) - Z( 1) >= 0
4] X( 1) + X( 2) + X( 10) - Z( 2) >= 0
5] X( 1) + X( 2) + X( 10) - Z( 3) >= 0
6] X( 4) + X( 7) - Z( 4) >= 0
7] X( 1) + X( 4) + X( 5) + X( 10) - Z( 5) >= 0
8] X( 3) + X( 5) + X( 9) + X( 10) - Z( 6) >= 0
9] X( 4) + X( 6) + X( 7) - Z( 7) >= 0
10] X( 4) + X( 5) + X( 7) - Z( 8) >= 0
11] X( 5) + X( 7) + X( 8) + X( 9) - Z( 9) >= 0
12] X( 8) + X( 9) - Z( 10) >= 0
13] X( 6) + X( 7) + X( 8) - Z( 11) >= 0
14] X( 7) + X( 8) + X( 9) - Z( 12) >= 0
END
INTE 22
```


The optimal solution:

Global optimal solution found a Objective value:		
Branch count:		
Variable	Value	Reduced Cost
X(2)	1.000000	0.0000000
X(4)	1.000000	0.0000000
X(9)	1.000000	0.0000000
Variable	Value	Reduced Cost
Z(1)	1.000000	-2.000000
Z(2)	1.000000	-4.000000
Z(3)	1.000000	-3.000000
Z(4)	1.000000	-3.000000
Z(5)	1.000000	-5.000000
Z(6)	1.000000	-6.000000
Z(7)	1.000000	-2.000000
Z(8)	1.000000	-7.000000
Z(9)	1.000000	-6.000000
Z(10)	1.000000	-4.000000
Z(12)	1.000000	-3.000000

Actual cost is only $2.8 \$ M$. All communities can be covered except \# 11 !

Often there are multiple optimal solutions...
but optimizers will report only one (selected arbitrarily).
In this case, we would sometimes like to add another criterion to break ties among these optimal solutions, e.g.,

- maximize the number of demand nodes covered twice.

This will add reliability to the solution (facilities might become temporarily unavailable!)

- maximize the use of existing facilities
if some of the facilities already exist.

Secondary Objective:

Maximize the number of demand nodes covered twice

Define another set of decision variables:
For all $i=1,2, \ldots \mathrm{~m}: \quad Y_{i}= \begin{cases}1 & \text { if demand } i \text { is covered at least twice } \\ 0 & \text { otherwise }\end{cases}$
Replace each constraint
$\sum_{j=1}^{n} a_{i j} X_{j} \geq 1 \quad$ with the constraint $\sum_{j=1}^{n} a_{i j} X_{j} \geq 1+Y_{i}$

We want to modify the objective $\min \sum_{j=1}^{n} X_{j}$ so that:
of two solutions having the same value of $\min \sum_{j=1}^{n} \mathrm{X}_{\mathrm{j}}$,
the one with larger $\sum_{i=1}^{m} Y_{i}$ will have a lower cost!
Therefore,
we subtract some multiple of $\sum_{i=1}^{m} Y_{i}$ which cannot be larger than the cost of adding another facility to the cover.

Since
 we subtract $\left(\sum_{i=1}^{m} Y_{i} / m+1\right)$ from $\sum_{j=1}^{n} X_{j}$ as a "tie-breaker".
That is, $\min \sum_{j=1}^{n} \mathrm{X}_{\mathrm{j}}$ is replaced by $\min \sum_{j=1}^{n} \mathrm{X}_{\mathrm{j}}-\sum_{i=1}^{m} Y_{i} / m+1$
This added term is always less than the cost of adding another set to the cover!

Secondary objective:

Maximize the use of any facilities already existing.

Define the subset J_{E} of facilities to be those already existing.
We want there to be some disincentive ε to selecting a non-existing facility instead of an existing one.

Replace the objective min $\sum_{j=1}^{n} \mathrm{X}_{\mathrm{j}}$ by $\min \sum_{j \in J_{E}} \mathrm{X}_{\mathrm{j}}+(1+\varepsilon) \sum_{j \notin J_{E}} \mathrm{X}_{\mathrm{j}}$
This disincentive ε should never be more than $1 /\left|J_{E}\right|$, where $\left|J_{E}\right|$ is the number of existing facilities in J_{E}.

