

classifying

Simplex Tableaus

© Dennis Bricker, 2004
University of Iowa

Note: We assume that the tableau is set up so that the basic variable in the objective row is $-Z$ rather than Z .

a. The number in the objective row of a **nonbasic** variable indicates the change in the objective function per unit increase in the variable.

- if maximizing, we call it **relative profit**
- if minimizing, we call it **reduced cost**

b. **Any** nonbasic variable with

- positive relative profit (if maximizing) or
- negative reduced cost (if minimizing)

can be chosen to enter the basis.

(That is, we need not choose the “most positive” relative profit or “most negative” reduced cost.)

Example: either X_1 or X_3 could be selected as the pivot column:

$-Z$ (max)	X_1	X_2	X_3	X_4	X_5	RHS
1	1	0	3	0	0	-27
0	5	0	1	1	0	11
0	0	1	6	0	0	52
0	-2	0	2	0	1	33

For convenience, suppose we are minimizing— similar conclusions will follow the maximizing case:

c. If no nonbasic variable has a negative reduced cost, the basic solution is **optimal**.

Example:

$-Z$ (min)	X_1	X_2	X_3	X_4	X_5	RHS
1	1	0	3	0	0	-27
0	5	0	1	1	0	11
0	0	1	6	0	0	52
0	-2	0	2	0	1	33

d. If a nonbasic variable has zero reduced cost, there may be another basic solution with the **same objective value**.

Example: a pivot in X_1 column does not change the objective value

$-Z$ (min)	X_1	X_2	X_3	X_4	X_5	RHS
1	0	0	-3	0	0	-27
0	5	0	1	1	0	10
0	0	1	6	0	0	52
0	-2	0	2	0	1	32

(If reduced costs are ≥ 0 , and one nonbasic reduced cost is zero, then there are **multiple optimal solutions**.)

Example: A pivot in the X_1 column gives another basic solution with the same objective value:

$-Z$ (min)	X_1	X_2	X_3	X_4	X_5	RHS
1	0	0	-3	0	0	-27
0	1	0	0.2	0.2	0	2
0	0	1	6	0	0	52
0	0	0	0.4	0.4	1	36

e. If a nonbasic variable with negative reduced cost has no positive substitution rate, i.e., no candidate for the pivot, the LP has an **unbounded solution** (even if some other nonbasic variable does have an eligible pivot).

Example: Although X_3 could enter the basis, the LP has an unbounded solution because X_1 can increase without limit, sending the objective function to $-\infty$:

$-Z$ (min)	X_1	X_2	X_3	X_4	X_5	RHS
1	-1	0	-3	0	0	-27
0	-5	0	1	1	0	11
0	0	1	6	0	0	52
0	-2	0	2	0	1	33

f. If a basic variable has the value zero, we call the basic solution **degenerate**.

Example: the basic variable X_3 is zero:

$-Z$ (min)	X_1	X_2	X_3	X_4	X_5	RHS
1	-1	0	-3	0	0	-27
0	5	0	1	1	0	0
0	0	1	6	0	0	52
0	2	0	2	0	1	33

g. If the pivot column has a *positive substitution rate* in a row with zero on the right-hand-side (i.e., solution is *degenerate*), then

- the minimum ratio (RHS/positive substitution rate) is zero
- the simplex method is forced to pivot in that row
- the variable entering the basis will remain zero in the new tableau, that is, the new basic solution will also be degenerate
- there will be *no changes in the values of any variable* or the objective function

(Degenerate pivots will continue until a pivot column has only zero or negative substitution rates in rows with zero right-hand-sides.)

Example: Whether X_1 or X_3 is selected for the pivot row, X_4 will leave the basis but the entering variable will remain zero.

$-Z$ (min)	X_1	X_2	X_3	X_4	X_5	RHS
1	-1	0	-3	0	0	-27
0	5	0	1	1	0	0
0	0	1	6	0	0	52
0	2	0	2	0	1	33

h. *It is possible but very rare that the simplex method will get “stuck” in a **cycle** of degenerate basic solutions and unable to converge to the optimal solution.*

(Special rules for choosing the pivot column can guarantee this doesn’t happen, but are seldom implemented in computer software.)