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Benders' Decomposition
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Benders' Decomposition

(also known as Benders' FPartitioning)

I's" Theory

Applications

=

=

Capacitated Plant Location
Stochastic LP with Recourse

@0 L EBricker, U, of A4, 1992
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Consider the problem Minimize cx + dy

subjectto Ax + By = b
x =0
vVEY

The variables X are continuous, but the variables
v are ‘complicating in some way...

often
Y={y|yie (0,1}}

i.e., ¥ is binary integer.

@0 L EBricker, U, of A4, 1992
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A key concept in Benders' algorithm is that
of partitioning the variables into two sets (x & v)
and "projecting” the problem onto the v variables.

Define viy) = dy + min {c:-c |Ax=zb-By,x=0

The original problem
is clearly seen to be
equivalent to:

@0 L EBricker, U, of A4, 1992

Minimize viy)

subject to vEY
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Evaluating viv) entails solving an LP problem in x,
or, by LP duality theory, its dual LP:

v(y) = dy + max {(b-By/lu | ATuz ¢, uz 0} |

What are the characteristics of this function?

@0 L EBricker, U, of A4, 1992
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For simplicity, assume that the primal LP

min{cx|Ax::h—E}r,x::ﬂ}

is always feasible for every choiceof Y (e.g.,
x includes "artificial” variables with high costs).

Then the dual LP
max {(h—B}r}Tu | Alu < ¢, Uz ﬂ}

has a bounded feasible region.

@0 L EBricker, U, of A4, 1992
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In principle, it is =3
possible to identify
and enumerate all
of the extreme
points of the
dual feasible u
region.
n principie then,
one cold evaliuale
the dual LF obrectrve
at each extreme pi,
(b-By) u’
o, & CROOSE Lhe best.

feasible

cregion:
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That is, we can evaluate the function viv) by

. T~
= dy + b-By) u
viy)=dy mazimym {( }’)“}

" )
= i s +
v(y) = magimym jay b
where Gl=[G]'B+da, p'=bTa

So we see that the function viV/ [s the maximin
af a ffarge/ set of Ifnear functfons in v/

@0 L EBricker, U, of A4, 1992
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v(y) iz piecewise | @y +
linear & convexl

For fffostratron, consrder Y
F = real nimbers,

@0 L EBricker, U, of A4, 1992
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Minimize 18x; + 8x» + 20x3z + 8y
subjectto J3x;+ X2+ X3+2y 06 |
X1+ X2+ 4xz+ v = 10
xjz 0,j=1,2,3,4
ve (0,1,2,3,...12]}

efine rmin 18x; + 8x- + 20x+
v(y) = 8y + - subjectto 3x| + X2+ x3 = 0 -2y
X1+ X +4x3 = 10-¥

! xi> 0,j=1,2,3,4

@0 L EBricker, U, of A4, 1992
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fhe runclion v may be evaivaled by solving eilher

Primal [ F [ min 18x; + 8xz + 20x3
v(y) = 8y + 4 subject to 3x; + x2+ X3 = 0 -2y
X1+ x2+4x3z = 10-¥
5 xj=0,5=1,2,3,4
ar
Llual LF " max (6-2yvju; + {10-y)uz

subject to 3u; + uz = 18
4 u;+ ux < 8
u; +4us = 20
u; = 0,u =0

viy) =8y +

@0 L EBricker, U, of A4, 1992
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maximization is with |
respect to ujand up |
with y temporarily |
fixed

r

max (b-2yju; + (10-yv)juz
subject to 3u; + uz = 18
" un+ uz = 8
u; +4u: = 20
u;=0,u=0

viy) =8y +

L

The dual feasible region |
doesn’'t depend upon the
value of y

@0 L EBricker, U, of A4, 1992
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The dual feasible max (6-2y)u; + (10-y)uy
region has five subjectto 3u; + uz = 18
extreme points uj+ ux < 8
- u; +4uz = 20
(G . upz0,uz0 |

ug - The solution of the LP
’ 5?*3] must be one of these
2 extreme points.

@0 L EBricker, U, of A4, 1992
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Extreme Sy +(6-2y)u;

point + {(10-y)u;
u

(0,0) 8y
(0.5) 3y + 50
(4,4) —41}; + 64
(5,3) —51}; + B0
(6,0) —41}; + 36

o

For any v,
the value of

| v(y) is the

maximum of
these five

L

linear functions
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EXAMPLE v
Support 1 3 D 7 Q
Oy 0 24 40 b 72
Sy + 00 | D3 295 bogy /1= 7/ /%
-4y + 64 | 60577 92 44 36 28
-0y + 60 | DO 45 39 29 15
-4y + 36 | 32 24 16 0 0

@0 L EBricker, U, of A4, 1992
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Note, however, that v(y) is to be evaluated by
solving a linear programming problem, not by
identifying all of the dual extreme points and
computing the corresponding linear function
of v.

The number of linear functions which define
v(y) is, in general, "astronomical” !

@0 L EBricker, U, of A4, 1992
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Suppose that v(y) is
the maximum of P linear
functions ("supports”)

_ . ﬂj ’ﬁ“j
v(y) _maf.:iiljtggm{(}: v + B}
If k supports are used (where k<P), we get an

underestimate of viy):

@0 L EBricker, U, of A4, 1992
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Note that w,(y) < viy), ie, Y

it underestimates v{y)

@0 L EBricker, U, of A4, 1992
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| beqgin |

Initialization

e, kel

8/21/00

Solve Partial
Master Froblem

i.e., min Ek':"f:' stoyel

page 20

-

select arbitrary

Benders’

Decomposition

Algorithm
@D.L BMcker, U, of 14, 1995

=

Solve Subproblem

Evaluate v(¥) by
solving LP with
fixedy .

Improve approxi-
mation by using
dual extreme pt to
generate new
support, kelk+l1

/\
v [¥]) = v(¥)

W
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SOINLDEA R At each iteration, we must solve
Partial Master

Problem

Minimize v . (y)

ve

where v.,(y) isthe current approximation to v(y),

that is, — ' ciiv 4
vily) ma@}g}ym{ﬂ y+ P }

How do we aocomplish thsy

@0 L EBricker, U, of A4, 1992
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Minimize [ma}:imum {ﬁj v+ B’ H
yey 1=1=k

E}I ultrndumﬂg Minimize z

a new (continuous) i subject to
* variable z, we can i
- write the master
problem as an
2. "almost-pure” . ¥y =Y, z unrestricted
cinteger LP. /)
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Solving th The Awal/ Simplex Method
vamgbl © should be used in solving
ubproblems the subproblems...

The optimal dual solution U of the previous
subproblem will still be feasible in the next
subproblem, and can be used as the initial
basic feasible solution of the dual, whereas
using the grimz/ simplex method would
generally require a Phase-0One procedure with
artificial variables in order to obtain an initial
basic feasible solution.

@0 L EBricker, U, of A4, 1992
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Solving the | Use of the Dual Simplex Method
ubproblems yvields another "bonus”:

Each dual-feasible solution encountered during
the solution of a subproblem can be used to
generate another linear support, thereby
improving the approximation of the function v(y)

That i1s, multiple supports can be added at each
iteration of Benders' algorithm!

@0 L EBricker, U, of A4, 1992
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CDFI_SidEI“ Minimize 18x; + 8x5 + 20x3 + 8y
again our subjectto 3x|+ X2+ x3+2y =6
example:

X1+ X2+ 4xz+ v = 10
x;z 0,i=1,2,3,4

ve{0,1,2,3,..12]

lteration #1 Let ¥y =0 be our initial "guess”

We must next evaluate v(0)
by solving the LP with y=0.

@0 L EBricker, U, of A4, 1992
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Subproblem Evaluate v(0Q)

vi0) max du; + 10us
s.t. [ 3u; + u

[P

18
u; + uz = 8
u; + 4uz = 20

L u=0, ux=0

The maximum occurs at the
extreme point (4,4), which we

£

will label u

@0 L EBricker, U, of A4, 1992



Benders' Decomposition 8/21/00 page 27

Qur initial approximation for the
function v is

v (y) =8y +max (6-2y)u| + (10-y)u},
= - 4y + 64

Note ihal WO =0 = 54

FREE TS, 1R Bo0raNinalion
15 exacl, v = 1 for =il

@0 L EBricker, U, of A4, 1992
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SHUMWINCIQICIEN  minimize v (y) = - 4y + 64
M = s.t.ye{0,1,2,3,... 12}

The minimum occurs at y = 12
where vi(12)=16.

2l

vily)

T T T T T T T 1
o1 2 3 4 5 6 7 & 9 10 11 12

@0 L EBricker, U, of A4, 1992
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Evaluate v(12), i.e.

v(12) =812+ max (6-2x12)u; + (10-12)u;

s.t. 3u;+ux = 18 @
u + uz = 8

u +4uz = 20
u=0, uz=0

The maximum occurs at the extreme point (0,0),
which we will label G~
Stopping v(12) =96 > 16 = v,(12), so we do

not terminate.
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Adding a linear support to N
J PP 02 =(0,0)

our approximating function

- -~ " "
Gy + B =8y + (6-2y)u] + (10-y)u3
— 3}?
and so we obtain the new approximation

¥,(¥) = max {- 4y+064, 8y ]

@0 L EBricker, U, of A4, 1992



Benders' Decomposition 8/21/00 page 31

Solving partial Minimize
Master Problem v,(y) = max {- 4y+064, 8y ]

s5.t. yel0,1,2,3,... 12}

l v (y)

1 X2 The minimum
50- occurs at y=0o,

] T T~ where v (5)=44

1~ T

1
B Y & 9 10 11 12

@0 L EBricker, U, of A4, 1992
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LI IGINE|  Evaluate v(5), i.e.

vid) =8 x5+ max (6-2x3juy +{10-Fjuz=-4u;+5uz
st.3u;+u-= 18
u; + uz = 8
u; +4uz = 20
u=0, uz=0
The minimum value 1s 65, achieved at the
extreme point (0,5), which we label U3

SUUYOUIE v, (5)=44 < 65=v(5) s0 we cannot
Criterion [ terminate

@0 L EBricker, U, of A4, 1992
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Adding a linear support to

our approximating function u*=1(0,5)

G3v+ B3= 8y + (6-2y)ur+ (10-y)i3
= 3y + 50

and so we obtain the new approximation

¥.(¥) = max {- 4y+64, 8y, 3y + 50 |

@0 L EBricker, U, of A4, 1992
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Solving partial Minimize
MEEVCISMEIENE v (v) = max {- 4y+64, 8y, 3y + 50 ]

s5.t. yel0,1,2,3,... 12}

_ vily)

] = The minimum
SD__.--""--“- ----H--""-.__\__.."H-f.. GECUPS at- lIy’=2:|

- - T - =

1 P — where v (2)=56

- .-__,-" — T—

@0 L EBricker, U, of A4, 1992
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LI IIGINE|  Evaluate v(2), i.e.

vi2) =8 x 2+ max (6-2x2juy +{10-2juz= 2u;+8us
st.3u;+u-= 18
u; + uz = 8
u; +4uz = 20
u=0, uz=0
The minimum value 1s 56, achieved at both
the extreme points i'=(4,4) and G3=(0,5)

Stf_l'DDi{"Q v{2)= 56=v(2) 50 we can now
Criterion (N terminate!

@0 L EBricker, U, of A4, 1992
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Suboptimizing the

Partial Master Problem

Benders master problem was to choose yeY

50 as to Minimize v . (y)

where v.(y) 15 the current approximation to
viy), i.e.,

— maxi Gy + B
vi(y) ma&}g}{um{m }f+ﬁ}

@0 L EBricker, U, of A4, 1992
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This is accomplished by solving to optimality
the (almost-pure) integer LP:

Minimize z - PN 1
subject to =8y + E’
z = Q¢ }r [32

Lzzaky+ BF
y =Y, z unrestricted

by an implicit enumeration (branch-&- hnund)
algorithm. This is generally the most costly

part of the total computation!

@0 L EBricker, U, of A4, 1992
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Any y such that v (y) is less than the
incumbent, ¥V*, is a candidate for optimality.

@0 L EBricker, U, of A4, 1992
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Rather than optimizing the master problem,

8/21/00

therefore, we might seek only a feasible

solution to the "pure”

-~

This modification to Benders' algorithm will

integer LP:

result in significant savings in CPU time.

@0 L EBricker, U, of A4, 1992
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Embedding Benders' Algorithm

in an Implicit Enumeration

This is a modification of E’-ender‘ﬁ algorithm
vwith suboptimization of the Master Problem

Suboptimizing the master Fi”q ¥ E_Y
problem has been satisfying
accomplished when - *’“‘1},+[3 = V* |
reaching a terminal node &y + [3 RV

of the enumeration tree.

@0 L EBricker, U, of A4, 1992
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The next partial master problem differs from
the previous one in that

# it has an added constraint

# the right-hand-side ¥V* might be lower
(if the incumbent has been replaced by
the solution of the subproblem just
solved)

Each of these changes to the system of
inequalities reduces the feasible region
of the system....

@0 L EBricker, U, of A4, 1992
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Hence, any portion of the enumeration tree
which was fathomed during the previous
tree search remains fathomed when the
subsequent tree search begins.

That is, the enumeration can be "restarted”
at the terminal node which had been reached
in the previous Master Problem solution.

The enumeration tree 1s completely searched
only once during the entire algorithm!

Ka

@0 L EBricker, U, of A4, 1992
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