

The "Memoryless" arrival process indicates a Poisson arrival process, in which the interarrival times have an *exponential* distribution.

Likewise, the "Memoryless" service process indicates that the service times have an *exponential* distribution.

⊚D.L.Bricker, U. of IA, 1999

LITTLE's Queueing Formula

 $L = \lambda \; W$

Intuitive argument:

Suppose that you join a queue and spend **W** minutes before you have been served and leave.

During those \mathbf{W} minutes, customers have been arriving and joining the queue behind you at the average rate of $\underline{\lambda}$ per minute. Thus, when you are ready to leave, you should expect to see $\underline{\lambda}\mathbf{W}$ customers remaining in the system behind you.

you enter queue

@D.L.Brick&;////P.m.,?1999

M/M/1

Interarrival times and service times both have exponential distributions,

with parameters $\,\lambda\,$ & $\,\mu$, respectively.

That is, the "customers" arrive at the rate of λ per unit time, and are served at the rate $\,\mu$ per unit of time.

It is assumed that the queue has infinite capacity, and that $\mu > \lambda$ (so that the queue length does not tend to increase indefinitely.)

In this case, it is possible to derive the probability distribution of the number of customers in the queueing system.

Kendall's Notation

Arrival Service Number Capacity
Process Process of Servers of System
(omitted if
infinity)

M: Memoryless (Markovian)

E_k: Erlang-k D: Deterministic

GI: General Interarrival times (but i.i.d.)

G: General service times (but i.i.d.)

⊕D.L.Bricker, U. of IA, 1999

LITTLE's Queueing Formula

papplies to any queueing system having a steady state distribution

⊕D.L.Bricker, U. of IA, 1999

Most theoretical results have been obtained for the case in which both inter-arrival times and service times are *memoryless* (have *exponential* dist'n):

☞M/M/1

I M/M/c (c>1)

☞M/M/1/N ☞M/M/1/N/N

already in the queueing system.

A case in which service time is not memoryless:

I M/G/1

Exercises

@D.L.Bricker, U. of IA, 1999

M/M/1

 π = $(\pi_0, \pi_1, \pi_2, \dots)$ denotes the "steady-state" distribution of the number of customers in this M/M/1 queueing system, i.e., 1+number in queue. Equivalently, π_i is the probability (in steady state) that an arriving customer will find i customers

$$\pi_i = \left(1 - \frac{\lambda}{\mu}\right) \left(\frac{\lambda}{\mu}\right)^i$$

M/M/1

Using this probability distribution, we can then derive the average number of customers in the system:

$$L = \, \textstyle\sum\limits_{i=0}^{\infty} \, i \, \, \pi_i = \, \textstyle\sum\limits_{i=0}^{\infty} \, i \, \bigg(1 - \frac{\lambda}{\mu} \bigg) \bigg(\! \frac{\lambda}{\mu} \! \bigg)^i$$

$$\implies \left| L = \frac{\frac{\lambda}{\mu}}{1 - \frac{\lambda}{\mu}} \right| = \frac{\rho}{1 - \rho}$$

where $\rho = \frac{\lambda}{u} < 1$

⊕D.L.Bricker, U. of IA, 1999

M/M/1

For the M/M/1 queueing system, then

$$W_q = W - \frac{1}{\mu} \implies \boxed{W_q = \frac{\lambda}{\mu(\mu - \lambda)}}$$

$$L_q = \lambda \ W_q \quad \Longrightarrow \quad \boxed{ L_q = \frac{\lambda^2}{\mu(\mu - \lambda)} }$$

⊕D.L.Bricker, U. of IA, 1999

M/M/1

 λ = arrival rate = 3/hour

 μ = service rate = 4/hour

Utilization of the server

$$\rho = \frac{\lambda}{\mu} = 0.75$$

Average number of
$$L = \frac{\rho}{1 - \rho} = \frac{0.75}{1 - 0.75} = 3$$

Average time in system per truck
$$W = \frac{L}{\lambda} = -\frac{3}{3/\text{hr}} = 1 \text{ hr.}$$

@D.L.Bricker, U. of IA, 1999

M/M/c

 Arrival & Service processes are Memoryless, i.e.,

> interarrival times have Exponential distribution with mean 1/1 service times have Exponential distribution with mean 1/µ

- Number of servers is c
- Capacity of queueing system is infinite

M/M/1

For the M/M/1 queueing system, Little's formula implies that

$$W = \frac{L}{\lambda} = \frac{\rho}{\lambda \left(1 - \rho\right)}$$

$$\implies \boxed{W = \frac{1}{\mu - \lambda}}$$

⊚D.L.Bricker, U. of IA, 1999

Example

An average of 24 trucks per 8-hour day arrive to be unloaded &/or loaded, which requires an average of 15 minutes.

The loading dock can handle only a single truck at a time.

Assume that the arrival process is Poisson, and that the service times have exponential distribution.

This loading dock is modeled as an M/M/1 queue.

⊚D.L.Bricker, U. of IA, 1999

M/M/1

 λ = arrival rate = 3/hour

 μ = service rate = 4/hour

Average time in the aueue the queue

 $W_q = W - \frac{1}{\mu} = 1 \text{ hr. } - \frac{1}{4/\text{hr}}$

Average length $L_q = \underline{\lambda} \; W_q \quad \text{= (3/hr)(0.75hr)}$ of the queue

@D.L.Bricker, U. of IA, 1999

eady-state Behavio.

If the arrival rate λ is less than the combined rate cu at which the servers can work, then the system will have a steadystate distribution, given by:

$$\pi_{\,0} = \frac{1}{\sum\limits_{n=0}^{c-1} \frac{(c\rho)^n}{n!} + \frac{(c\rho)^c}{c!} \frac{1}{1-\rho}} \qquad \pi_{\,j} = \frac{(c\rho)^j}{j!} \pi_{\,0} \ , \ j{=}1,2,...c \\ \pi_{\,j} = \frac{(c\rho)^j}{c!c^{j{-}c}} \pi_{\,0} \ , \ j{=}c,c{+}1,....$$

where
$$\rho = \frac{\lambda}{c \mu} < 1$$

Probability that all servers are busy:

$$\sum_{j \geq c}^{\infty} \pi_j = \frac{(c\rho)^c}{c!(1-\rho)} \pi_0$$
 where $\rho = \frac{\lambda}{c\mu} < 1$

This, then, is the probability that an arriving customer will be required to wait for service!

M/M/c

Average Length of Queue

(not including those being served)

$$L_{q} = \sum_{j=0}^{\infty} j \, \pi_{c+j} = \sum_{j=0}^{\infty} j \, \pi_{0} \, \frac{(c \, \rho)^{c+j}}{c! \, c^{j}} = \pi_{0} \frac{(c \, \rho)^{c}}{c!} \sum_{j=0}^{\infty} j \, \rho^{j}$$

 $\rho = \frac{\lambda}{c \ \mu}$

⊕D.L.Bricker, U. of IA, 1999

M/M/c

Average Length of Queue

(not including those being served)

$$L_q = -\frac{\rho (c\rho)^c}{c!} \pi_0 \left(\frac{1}{1-\rho}\right)^2$$

Once L_q is computed, then we can compute (using Little's formula)

$$W_q = \frac{L_q}{\lambda}$$
, $W = W_q + \frac{1}{\mu}$, & $L = \lambda W$

⊕D.L.Bricker, U. of IA, 1999

two M/M/1 queues

separate queue per server

Average waiting time: $W_q = \frac{\lambda}{\mu (\mu - \lambda)}$

$$W_q = \frac{4/hr}{(5/hr)(5-4)/hr} = 0.8 hr$$
 (48 minutes)

@D.L.Bricker, U. of IA, 1999

single M/M/2 queue

$$\lambda$$
=8/hr $\bigcirc \longrightarrow \mu$ = 5/hr $\longrightarrow \mu$ = 5/hr pooled servers

Rather than maintaining a separate queue for each server, customers enter a common queue.

$$\rho = \frac{\lambda}{2\mu} = \frac{8/hr}{2\times 5/hr} = 0.8 \ \ \langle \ \ | \ \ \ \ \ \ \,$$
 which implies that a steady state exists/

⊚D.L.Bricker, U. of IA, 1999

Example: Pooled vs. Separate Servers

Compare two queueing systems:

$$\lambda$$
=4/hr \longrightarrow \longrightarrow μ = 5/hr λ =4/hr \longrightarrow \longrightarrow μ = 5/hr separate queue per server

$$\lambda$$
=8/hr $\bigcirc \longrightarrow \bigcirc \bigcirc \bigcirc \bigcirc \longrightarrow \mu$ = 5/hr $\downarrow \bigcirc \longrightarrow \mu$ = 5/hr pooled servers

⊕D.L.Bricker, U. of IA, 1999

@D.L.Bricker, U. of IA, 1999

$$L_{q} = \frac{\rho}{1 - \rho} P\{both servers busy\}$$

$$= \frac{0.8}{0.2} (0.71111111) = 2.844444444$$

$$W_q = \frac{L_q}{\lambda} \quad = 0.35156 \;\; hr. \; = \; 21.1 \; minutes \label{eq:wq}$$

⊕D.L.Bricker, U. of IA, 1999

M/M/1/N

- Arrival & Service processes are Memoryless, i.e., interarrival times have Exponential distribution with mean 1/h service times have Exponential distribution with mean 1/h
- Single server
- Capacity of queueing system is finite: N
 (including customer currently being served)
- Arriving customers balk when queue is full.

⊕D.L.Bricker, U. of IA, 1999

Average Number of Customers in System

$$L = \sum_{j=0}^{N} j \pi_{j}$$

$$L = \frac{\rho \left[1 - (N+1)\rho^{N} + N \rho^{N+1} \right]}{(1 - \rho^{N+1}) (1 - \rho)}$$

where $\rho = \frac{\lambda}{\mu} \neq 1$

@D.L.Bricker, U. of IA, 1999

Average Time in System per Customer

Little's Formula: $L = \frac{\lambda}{2}W$ $\frac{\lambda}{2}$ average arrival rate

$$\begin{split} \underline{\lambda} &= \sum_{j=0}^{N-1} \lambda \ \pi_j = \lambda \sum_{j=0}^{N-1} \ \pi_j = \lambda \ (1 - \pi_N) \quad \textit{since arrival rate} \\ &\quad \textit{is zero when there} \\ \\ W &= \underline{\frac{L}{\lambda}} = \frac{L}{\lambda (1 - \pi_N)} \end{split} \quad \text{are N in system}$$

By pooling the servers, the average waiting time per customer is reduced by approximately 56%

⊚D.L.Bricker, U. of IA, 1999

M/M/1/N

Steadystate Distribution

$$\begin{split} \pi_0 &= \frac{1 - \rho}{1 - \rho^{N+1}} \\ \pi_j &= \rho^{|j|} \pi_0 = \rho^{|j|} \left(\frac{1 - \rho}{1 - \rho^{N+1}} \right) \end{split}$$

where $\rho = \frac{\lambda}{\mu} \neq$

Note that ρ is not restricted to be less than 1 for steady state to exist!

⊕D.L.Bricker, U. of IA, 1999

M/M/1/N

Special Case: $\lambda = \mu$, i.e., $\rho = \frac{\lambda}{\mu} = 1$ Arrival rate = Service rate

$$\pi_{j} = \frac{1}{N+1}$$

$$L = \frac{N}{2}$$

All states are equally likely!

System is, on average, half-full!

@D.L.Bricker, U. of IA, 1999

M/M/1/N/N

- Single server
- Finite Source Population of size N
- Arrival & Service processes are Memoryless, i.e., service times have Exponential distribution with mean 1/μ
- A departing customer returns to the queue after a time having an Exponential distribution with mean 1/1

4

Each customer, after being served, returns to the source population for a length of time having exponential distribution with mean 1/λ

⊕D.L.Bricker, U. of IA, 1999

Example

An operator can be assigned to service (load, unload, adjust, etc.) several automatic machines in a factory

- Running time of each machine before it must be serviced has exponential distribution, with mean 120 minutes.
- Service time has an exponential distribution with mean 12 minutes.

To achieve a desired utilization of $\geq 87.5\%$ for the machines, how many machines should be assigned to the operator?

⊕D.L.Bricker, U. of IA, 1999

$$\frac{1}{\pi_0} = \sum_{j=0}^{3} \frac{3!}{(3-j)!} (0.1)^j$$
 Steadystate Distribution
$$= 1 + 0.3 + 0.06 + 0.006$$

$$= 1.366$$

$$\pi_0 = \frac{1}{1.366} = 0.732965$$
 i.e., operator will be idle about 73% of the time!
$$\pi_1 = 0.3 \, \pi_0 = 0.2196$$

$$\pi_2 = 0.06 \, \pi_0 = 0.0439$$

@D.L.Bricker, U. of IA, 1999

M/G/1

 Arrival process is Memoryless, i.e., interarrival times have Exponential distribution with mean 1/λ.

 $\pi_{\,3} = 0.006\; \pi_{\,0} = 0.0044$

- Single server
- Service times are independent, identically distributed, but not necessarily exponential.
 Mean service time is ¹/μ with variance σ²
- Queue capacity is infinite

M/M/1/N/N

Steadystate Distribution

$$\pi_0 = \frac{1}{\sum\limits_{j=0}^{N} \frac{N!}{(N-j)!} \rho^j}$$

$$\pi_j = \frac{N!}{(N-j)!} \, \rho^{|j|} \pi_0$$

First calculate the probability π_0 that the server is idle.

Other probabilities are then multiples of π_0

where $\rho = \frac{\lambda}{\mu}$

⊕D.L.Bricker, U. of IA, 1999

This can be modeled as a M/M/1 queueing system with finite source population.

Machine operator = server

Machines = customers

 $\mu = 5/\text{hour}$

 $\lambda = 0.5/\text{hour}$

⊕D.L.Bricker, U. of IA, 1999

If O machines are in system, then 3 are busy processing jobs;

if 1 machine is in system, then 2 are busy processing jobs, etc.

Average utilization of the machines will be

$$\frac{3 \pi_0 + 2 \pi_1 + 1 \pi_2 + 0 \pi_3}{3} = 89.3\%$$

@D.L.Bricker, U. of IA, 1999

M/G/1

Steadystate Characteristics

A steadystate distribution exists if $\rho = \frac{\lambda}{\mu} < 1$ i.e., if service rate exceeds the arrival rate.

 $\pi_0 = 1 - \rho$ = probability that server is idle $1 - \pi_0 = \rho$ = probability that server is busy i.e., utilization of server

There is no convenient formula for the probability of j customers in system when j > 0.

M/G/1

Steadystate Characteristics

$$L_{q} = \frac{\lambda^{2} \sigma^{2} + \rho^{2}}{2 (1 - \rho)}$$

average number of customers waiting

After calculating L_q , Little's Formula allows us to compute:

& $L = \lambda W = L_q + \rho$

⊕D.L.Bricker, U. of IA, 1999

$$L_{q} = \frac{\lambda^2 \sigma^2 + \rho^2}{2 (1 - \rho)}$$

Keeping the mean service time fixed, it is clear that the length of the queue is proportional to the variance of the service time.

The more *regular* the service time distribution, i.e., the smaller the coefficient of variation, the *shorter* the queue.

@D.L.Bricker, U. of IA, 1999

- O The UI Dept. of Public Safety has 5 patrol cars.
- OA patrol car breaks down and requires service once every 30 days.
- O The dept. has 2 mechanics, each of whom takes an average of 3 days to repair a car.
- O Time between breakdowns & repair times have exponential distribution.

What is...

the average # of patrol cars in good condition the average down time for a car that needs repair

⊕D.L.Bricker, U. of IA, 1999

An average of 40 cars/hr. are tempted to use the drive-in window at the Hot Dog King.

- O If 5 cars (including the one at the window) are in line, no car will join the line.
- O It takes an average of 4 minutes to serve each car (with time having exponential dist'n)

What is...

- ... average # of cars waiting in line?
- ... # cars per hour served?
- ... average waiting time per car?

Solution

For the M/M/1 queue, the standard deviation equals the mean service time, i.e., σ = $^{1}\!/_{\mu}$ and the coefficient of variation equals 1.0

Using these formulae for the M/G/1 queueing system with σ^2 = $1/\mu^2$ will give results consistent with the formulae for M/M/1.

$$L_{q} = \frac{\rho^{2}}{(1 - \rho)}$$

⊕D.L.Bricker, U. of IA, 1999

$$L_{q} = \frac{\lambda^2 \sigma^2 + \rho^2}{2 (1 - \rho)}$$

The average number in the queue will be *minimized* when the service time is *constant*, i.e., $\sigma^2 = 0$. In this case, the average number in the queue will be exactly *half* of that for the exponential distin:

$$L_{q} = \frac{\rho^{2}}{2(1-\rho)}$$

 $\rho = \frac{\lambda}{\mu} < 1$

⊕D.L.Bricker, U. of IA, 1999

- A small bank is trying to determine how many tellers to employ.
- O Total cost of employing a teller is \$100/day.
- O A teller can serve an average of 60 customers per day (i.e., 8 minutes/customer).
- O An average of 50 customers per day visit the bank.
- O Arrivals form a Poisson process & service times have exponential distribution.
 - If delay cost per customer is \$100/day (i.e., about 21¢/minute), how many tellers should be employed?

⊕D.L.Bricker, U. of IA, 1999

Steady-State Distribution

i	ρ	Pi	CDF
012345	2.666667 2.666667 2.666667 2.666667 2.666667	0.004648 0.012394 0.033051 0.088136 0.235029 0.626743	0.004648 0.017042 0.050093 0.138228 0.373257 1.000000

The mean number of customers in the system (including the one being served) is 4.41673

D.L.Bricker, U. of IA, 1999

⊚D.L.Bricker, U. of IA, 1999

What fraction of the time will all 3 lanes be filled?

On the average, how many persons will be swimming?

How many lanes should be allocated to lap swimming to ensure that at most 5% of all prospective swimmers will be turned away? O An average of 10 persons/hour arrive at the YMCA intending to swim laps.

- O Each swimmer intends to swim an average of 30 minutes.
- O The Y has 3 lanes open for lap swimming. Each lane can handle 2 swimmers.
- O If all 3 lanes are occupied by 2 swimmers, a prospective swimmer becomes disgusted and goes running.

♦

⊚D.L.Bricker, U. of IA, 1999

- OThe manager of an office must decide whether to rent a second copier.
- OThe cost of a machine is \$40 per 8-hour day, whether used or not.
- OAn average of 4 workers/hour need to use the copier, and each uses it for an average of 10 minutes.
- OInterarrival times & copying times are exponentially distributed.
- OEmployees are paid \$8/hour, which is assumed to be the cost to the firm of a worker waiting in line for the copier.

How many copiers should be rented?

➾

Solution

⊕D.L.Bricker, U. of IA, 1999

servers = 1

i	ρ	Pi	CDF
012345678901123145	0.666667 0.666667 0.666667 0.666667 0.666667 0.666667 0.666667 0.666667 0.666667 0.666667 0.666667 0.666667 0.666667	0.333333 0.22222 0.148148 0.098765 0.065844 0.043896 0.029264 0.019509 0.013006 0.008671 0.005781 0.005589 0.002569 0.001142 0.001142	CDF 0.333333 0.555556 0.703704 0.802469 0.868313 0.912209 0.941472 0.960982 0.973988 0.982658 0.982658 0.982439 0.992293 0.994675 0.997716

servers =

⊚D.L.Bricker, U. of IA, 1999

Mean Queue Length (L) = 1.3333 Mean # Servers Busy = 0.66667 P(# idle servers > 1) = 0.3333

⊕D.L.Bricker, U. of IA, 1999

servers = 2

i	ρ	Pi	CDF
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	0.400000 0.400000 0.400000 0.400000 0.400000 0.400000 0.400000 0.400000 0.400000 0.400000 0.400000 0.400000 0.400000 0.400000 0.400000 0.400000 0.400000	0.666667 0.266667 0.053333 0.010667 0.002133 0.000427 0.000003 0.000001 0.000000 0.000000 0.000000 0.000000 0.000000	0.666667 0.933333 0.986667 0.997333 0.999467 0.999999 0.999999 1.000000 1.000000 1.000000 1.000000 1.000000

@D.L.Bricker, U. of IA, 1999

Mean Queue Length (L) = 0.016667Mean # Servers Busy = 0.4P(# idle servers > 1) = 0.93333 Steady State Dist'n

servers = 3

 i
 ρ
 Pi
 CDF

 0
 0.400000
 0.670103
 0.670103

 1
 0.400000
 0.268041
 0.938144

 2
 0.400000
 0.053608
 0.991753

 3
 0.400000
 0.007148
 0.998900

 4
 0.400000
 0.000127
 0.999853

 5
 0.400000
 0.00017
 0.99997

 7
 0.400000
 0.000017
 0.99997

 7
 0.400000
 0.000001
 1.000000

 8
 0.400000
 0.000000
 1.000000

 10
 0.400000
 0.000000
 1.000000

 11
 0.400000
 0.000000
 1.000000

 12
 0.400000
 0.000000
 1.000000

 13
 0.400000
 0.000000
 1.000000

 15
 0.400000
 0.000000
 1.000000

servers = 3

Mean Queue Length (L) = 0.0012688

Mean # Servers Busy = 0.4

 $P\{\# idle \ servers > 1\} = 0.99175$

⊕D.L.Bricker, U. of IA, 1999

O An automated car wash will wash a car in 10 minutes.

- O Arrivals occur an average of 15 minutes apart (exponentially distributed).
- O On the average, how many cars are waiting in line for the car wash?

If the car wash could be speeded up, what wash time would reduce the average wait to 5 minutes?

 $\langle \neg \ c \rangle$

Solution)

⊚D.L.Bricker, U. of IA, 1999

O Each airline passenger & his/her luggage must be checked to prevent weapons carried onto the plane.

- O At the local airport, 10 passengers/minute arrive at the checkpoint.
- O A checkpoint can check 12 passengers/minute (with exponential distribution).

What is the probability that an arriving passenger must wait to be checked? What is the average time that a passenger spends at the checkpoint?

K2 <2

Solution

⊕D.L.Bricker, U. of IA, 1999

i	Pi	CDF
0 1 2 3 4 5 6 7 8 9 10 11	0.333333 0.222222 0.148148 0.098765 0.065844 0.043896 0.029264 0.019509 0.013006 0.008671 0.005781 0.003854 0.002569	0.333333 0.555556 0.703704 0.802469 0.868313 0.912209 0.941472 0.960982 0.973988 0.982658 0.982658 0.982658

Mean Queue Length (L) = 1.3333 Mean number of servers busy = 0.66667 Probability that at least one server is idle = 0.33333

⊕D.L.Bricker, U. of IA, 1999

i	Pi	CDF
0 1 2 3 4 5 6 7 8 9 10 11 112 113 114 115	0.166667 0.138889 0.115741 0.096451 0.066980 0.055816 0.046514 0.032761 0.022431 0.022431 0.018693 0.015577 0.012981 0.010818	0.166667 0.305556 0.421296 0.517747 0.598122 0.7626102 0.767432 0.806193 0.806193 0.865412 0.865412 0.865412 0.96536 0.922113 0.935095 0.945912

Mean Queue Length (L) = 4.1667

@D.L.Bricker, U. of IA, 1999

⊕D.L.Bricker, U. of IA, 1999