Example:

Because of excessive pollution on the Momiss River, the state is going to build some pollution control stations.

Three sites are under consideration.

The state is interested in controlling the pollution levels of two pollutants: #1 & #2

The legislature requires that at least 80,000 lbs. of pollutant #1 and at least 50,000 lbs. of pollutant #2 be removed from the river annually.

©D. Bricker, U. of Iowa, 1998

Decision Variables

continuous:

 X_i = tons of H_2O treated at station #i annually

binary.

$$Y_i = \begin{cases} 1 & \text{if a station is built at site \#i} \\ 0 & \text{otherwise} \end{cases}$$

- annual cost over lifetime of station Data: Cost of Amt, removed per ton Cost of Site building treating of water Pollutant 1 Pollutant 2 station 1 ton H₂0 1 \$100,000 \$20 0.4 lb. 0.3 lb. 2 \$ 60,000 \$30 0.25 lb. 0.2 lb. 3 \$ 40,000 \$40 0.2 lb. 0.25 lb.

Formulate an ILP to minimize the cost of meeting the state legislature's goals.

Model
©D. Bricker, U. of lowa, 1998

Objective

Minimize
$$100000Y_1 + 60000Y_2 + 40000Y_3$$

construction cost of stations
 $+ 20X_1 + 30X_2 + 40X_3$
water treatment costs

©D. Bricker, U. of Iowa, 1998

©D. Bricker, U. of Iowa, 1998

Constraints

The required amounts of pollutants are removed:

$$\begin{cases} 0.4 \, X_1 + 0.25 X_2 + 0.2 X_3 \geq 80,000 & \textit{pollutant 1} \\ 0.3 X_1 + 0.2 X_2 + 0.25 X_3 \geq 50,000 & \textit{pollutant 2} \end{cases}$$

Water cannot be treated at a station unless it has been built: $X_i \subseteq M \mid Y_i = W$ where M is a

$$(If \ Y_i = 0, this forces \ X_i = 0)$$

where M is a suitably "big" number

©D. Bricker, U. of Iowa, 1998

Example:

Glueco produces 3 types of glue on 2 different production lines.

Each line can be utilized by up to 7 workers at a time. Workers on production line #1 are paid \$500/week, and workers on line #2 are paid \$900/week.

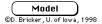
It costs \$1000 to set up production line #1 for a week of production, and \$2000 for line #2.

©D. Bricker, U. of Iowa, 1998

Data:

	Weekly o	utput per wo	rker (Barrels)
Line #	Glue #1	Glue #2	Glue #3
1	20	30	40
2	50	35	45
Weekly Rqr	mt: 120	150	200

Formulate an ILP to minimize the total cost of meeting weekly requirements.



Decision Variables

continuous:

 X_{ij} = man-weeks of time on line i producing glue j

integer:

 Y_i = number of persons assigned to line i

binary:

 $Z_1 = \begin{cases} 1 & \text{if line i is set up for production} \\ 0 & \text{otherwise} \end{cases}$

Objective

Minimize
$$\underbrace{1000 Z_1 + 2000 Z_2}_{set-up \ costs} + \underbrace{500 Y_1 + 900 Y_2}_{labor \ costs}$$

©D. Bricker, U. of Iowa, 1998

Constraints

Requirements for glue are met:

$$20X_{11} + 50X_{21} \ge 120$$
 glue #1
 $30X_{12} + 35X_{22} \ge 150$ glue #2

Capacity of line:

$$X_{11} + X_{12} + X_{13} \le Y_1$$
 /ine #/

$$X_{21} + X_{22} + X_{23} \le Y_2$$
 /ine #2

©D. Bricker, U. of Iowa, 1998

Constraints

We cannot assign workers to a line unless it has been set up:

$$Y_i \leq 7 Z_i$$
, $i=1,2$

©D. Bricker, U. of Iowa, 1998

Example:

The manager of the University's computer system wants to be able to access 5 different files. There are multiple copies of each file, scattered among 10 disks, as shown below:

File					D	isk				
#	1	2	3	4	5	6	7	8	9	10
1	Х	Χ	· ·	Χ	Χ			Χ	Χ	
2 3	X	Х	Х		Х		Х			Х
4		^	Χ			Χ		Χ		
5	X	Χ		Χ		Χ	Χ		Χ	Χ
					_ ∕л_	1				

©D. Bricker, U. of Iowa, 1998

If disk 3 or disk 5 is used, then disk 2 must be used.

Formulate an ILP to select the smallest set of disks which contain at least once copy of each file.

Decision Variables

$$X_i = \begin{cases} 1 & \text{if disk #i is selected} \\ 0 & \text{otherwise} \end{cases}$$

Objective

Minimize
$$X_1 + X_2 + \dots + X_{10}$$

©D. Bricker, U. of Iowa, 1998

model ©D. Bricker , U. of Iowa , 1998

Constraints

At least one copy of each file must be found among the selected disks:

Constraints

If disk 3 or disk 5 is used, then disk 2 must be used.

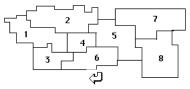
$$\begin{cases} X_3 \le X_2 \\ X_5 \le X_2 \end{cases}$$

(The pair of constraints is preferred from a computational point of view.)

Example

Gotham City has been divided into 8 districts.

The city wishes to station 2 ambulances so as to maximize the number of people who live within 3 minutes of an ambulance.



©D. Bricker, U. of Iowa, 1998

Decision Variables

The primary decision is whether to locate an ambulance in district i for i=1,2,...8:

$$Y_i = \begin{cases} 1 & \text{if an ambulance is located in district i} \\ 0 & \text{otherwise} \end{cases}$$

Another set of decisions is whether to assign for service a district i to an ambulance location i

$$X_{ij} = \begin{cases} 1 & \text{if district } j \text{ is to be served from district } i \\ 0 & \text{otherwise} \end{cases}$$

©D. Bricker, U. of Iowa, 1998

Objective

Maximize $40(X_{11}+X_{21}) + 30(X_{12}+X_{22})$

- $+35(X_{33}+X_{43}+X_{53}+X_{63}) + 20(X_{34}+X_{44}+X_{54}+X_{64})$
- $+ 15(X_{75}+X_{75}+X_{55}+X_{65}+X_{75})$
- $+50(X_{36}+X_{46}+X_{56}+X_{66}+X_{76}+X_{86})$
- $+45(X_{57}+X_{67}+X_{77}+X_{87})+60(X_{68}+X_{78}+X_{88})$

©D. Bricker, U. of Iowa, 1998

objective an expression of the form $P_{j} \sum \left\{ X_{ij} : t_{ij} \leq 3 \right\}$ e.g., for j=3: $35(X_{33} + X_{43} + X_{53} + X_{63})$ since districts 3,4,5,&6 are within 3 minutes' travel time of district 3.

©D. Bricker, U. of Iowa, 1998

Population

(thousands)

40

30

35

20

15 50

45

60

We wish to maximize the number

time of an ambulance

For each district j, we need to include in the

of persons within 3 minutes' travel

Model

©D Bricker II of lowa 1998

Constraints

Every district must be assigned to an ambulance:

to district

5 4 8

6 4 2 0 3 2 5

10 9 7 4 4 2 2

2 3 0 2 2 3 2 2 0 3

5 2 3 0

2 3 4

3 0

Objective

2

3

from district

4 6 8 9

4 8 0 2 2

5 6

7 8

8 10

6 12 9

$$\sum_{i=1}^{8} X_{ij} = 1 \quad \forall \ j=1,2,...8$$

e.g.,

$$X_{11}+X_{21}+X_{31}+X_{41}+X_{51}+X_{61}+X_{71}+X_{81} = 1$$
 (j=1)

©D. Bricker, U. of Iowa, 1998

Constraints

District j can be served from district i only if there is an ambulance in district i:

$$\sum_{j=1}^{8} X_{ij} \le 8Y_{i} \quad \text{for } i=1,2,... 8$$

e.g.,

$$X_{11}+X_{12}+X_{13}+X_{14}+X_{15}+X_{16}+X_{17}+X_{18} \le 8Y_1$$

Constraints

Two ambulances are to be assigned to districts:

$$\sum_{i=1}^{8} Y_{i} = 2,$$

i.e.,

$$Y_1 + Y_2 + Y_3 + Y_4 + Y_5 + Y_6 + Y_7 + Y_8 = 2$$

Model Statistics

of binary variables:

Y: 8 X: <u>64</u> total: 72

of continuous variables: 0

of constraints: 17

Another Formulation

Define as before:

 $Y_i = \begin{cases} 1 & \text{if an ambulance is located in district i} \\ 0 & \text{otherwise} \end{cases}$

and

 $X_j = \begin{cases} 1 & \text{if district } j \text{ is within } 3 \text{ minutes of} \\ & \text{an ambulance} \\ 0 & \text{otherwise} \end{cases}$

©D. Bricker, U. of Iowa, 1998

©D. Bricker, U. of Iowa, 1998

Objective

Maximize $40X_1+30X_2+35X_3+20X_4+15X_5+50X_6$ $+45X_7+60X_8$

Constraints

 X_j must be zero unless at least one ambulance is located within 3 minutes of district j

©D. Bricker, U. of Iowa, 1998

©D. Bricker, U. of Iowa, 1998

Constraints

Two ambulances are to be assigned to districts:

$$\sum_{i=1}^{8} Y_i = 2,$$

i.e.,

$$Y_1 + Y_2 + Y_3 + Y_4 + Y_5 + Y_6 + Y_7 + Y_8 = 2$$

Model Statistics

of binary variables:

Y: 8 X: <u>8</u> total: 16

of continuous variables: 0

of constraints: 9

©D. Bricker, U. of Iowa, 1998

©D. Bricker, U. of Iowa, 1998

: GO	VARIABLE	VALUE	REDUCED COST
LP OPTIMUM FOUND AT STEP 14			
	X1	1.000000	-40.000000
OBJECTIVE FUNCTION VALUE	X2	1.000000	-30.000000
	Х3	1.000000	-35.000000
1) 295,000000	X4	1.000000	-20.000000
1) 230.00000	X5	1.000000	-15.000000
	Х6	1.000000	-50.000000
	X7	1.000000	-45.000000
	X8	1.000000	-60.000000

VARIABLE	VALUE	REDUCED COST
Y1	1.000000	0.000000
Y2	0.000000	0.000000
Y3	0.000000	0.000000
Y4	0.000000	0.000000
Y5	0.000000	0.000000
Y6	1.000000	0.000000
Y7	0.000000	0.000000
Y8	0.000000	0.000000
NO. ITERATION	IS= 14	

BRANCHES= 0 DETERM.= 1.000E 0
FIX ALL VARS.(8) WITH RC > 15.0000

LP OPTIMUM IS IP OPTIMUM

©D. Bricker, U. of Iowa, 1998