Machine Replacement with Stochastic Failures

Suppose that one starts with a fresh component.

At the beginning of each week, the component is inspected and is determined to be either operational or broken down.

(That is, the component is not continuously monitored, and so the broken-down condition is only discovered at the beginning of the week.)

At the beginning of the week, after determining the condition of the component, we may decide to replace it with a fresh component, or to continue with the current component.

(Of course, if broken down, it must be replaced!)

Stage

\[ n = \# \text{ weeks remaining in the planning period.} \]

State of system

\[ S_n = \text{age of current component at end of stage } n. \]

\[ S_n \in \{1, 2, 3, 4\} \]

(We will consider state 4 to include the case in which the component has broken down, since these two states are indistinguishable.)

Decisions

\[ X_n = 0 \quad \text{keep} \]

\[ X_n = 1 \quad \text{replace with a fresh component} \]

A component of a machine has an active life, measured in weeks, that is a random variable \( T \), where

\[
\begin{align*}
P[T=1] &= 0.1, \\
P[T=2] &= 0.25, \\
P[T=3] &= 0.35, \\
P[T=4] &= 0.3
\end{align*}
\]

Note that the component never survives more than 4 weeks.

The machine earns $100 in revenues each week that it is operational with no breakdowns.

A replacement component costs $50.

We wish to formulate a DP model to select a policy to maximize the machine's revenue over \( N \) weeks, i.e., to specify the age at which the component should be replaced.

We will assume here that at the end of the \( N \) weeks, there is no salvage value for an operational component, since the machine will be completely overhauled.

Random outcome

\[ Z_n = \begin{cases} 
0 & \text{component survives week} \\
1 & \text{component fails} 
\end{cases} \]

Probability distribution

For each of the ages 1, 2, & 3, we need to compute the failure probability (conditional upon the component's having survived to that age and the decision being to keep the current component).

\[ \begin{align*}
p_{14}^0 &= P[Z_n=1 \mid S_{n}=1, X_{n}=0] \\
&= \frac{P[T=1]}{\sum_{t=1}^{4} P[T=t]} \\
&= \frac{0.1}{1} = 0.1 \quad \leftarrow Probability \ that \ the \ component \ fails \ during \ the \ next \ week, \ given \ that \\
& \text{it is one week old.} \\
p_{24}^0 &= P[Z_n=1 \mid S_{n}=2, X_{n}=0] \\
&= \frac{P[T=1]}{\sum_{t=3}^{4} P[T=t]} \\
&= \frac{0.25 + 0.35 + 0.3}{0.9} = 0.27777 \\
p_{34}^0 &= P[Z_n=1 \mid S_{n}=3, X_{n}=0] \\
&= \frac{0.25}{0.9} = 0.27777 \\
p_{44}^0 &= 1 - p_{34}^0 = 0.72222 \\
&= etc. 
\end{align*} \]
**Stochastic Machine Replacement Problem**

**State Vector**
\[
\begin{align*}
\mathbf{s}(i) & = 1, 2, 3, 4 \\
\end{align*}
\]

**Decision Vector**
\[
\begin{align*}
\mathbf{x}(i) & = 0, 1 \\
\end{align*}
\]

**Random Variable**
\[
\begin{align*}
\mathbf{d}(i) & = 0, 1 \\
\end{align*}
\]

**Probability Array**

<table>
<thead>
<tr>
<th>Age</th>
<th>( x = 0 )</th>
<th>( x = 1 )</th>
</tr>
</thead>
<tbody>
<tr>
<td>( s = 1 )</td>
<td>0.6</td>
<td>0.1</td>
</tr>
<tr>
<td>( s = 2 )</td>
<td>0.72</td>
<td>0.28</td>
</tr>
<tr>
<td>( s = 3 )</td>
<td>0.46</td>
<td>0.54</td>
</tr>
<tr>
<td>( s = 4 )</td>
<td>0.6</td>
<td>0.1</td>
</tr>
</tbody>
</table>

\( P \) is a 3-dimensional array of conditional probabilities

**APL Code**

```apl
∇ R.VALUE←F N;t;Return
[3] A ← ∇ R.VALUE←(n)0,-E0←R.cost=0;Return
[4] S ← ∇ LAST IF R=0
[5] t ← ∇ (G<(E;G)<(G;E))←1,.4;G←1;E←4
[6] Return←(S;G)<(G;S;E)←TERMINATE
[7] ∇ VALUE←(p;G)←0;E←TERMINATE
[8] S ← ∇ LAST VALUE←(p;G)←0;E←TERMINATE
```

\( R\text{-cost} = 0.50 \)

Revenue = 100.0

\( f_0(S_0) = 0 \quad \forall S_0 \)

**Stage 1**

<table>
<thead>
<tr>
<th>( S_1 )</th>
<th>( f_1(S_1) )</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>69.00</td>
</tr>
<tr>
<td>1</td>
<td>72.00</td>
</tr>
<tr>
<td>2</td>
<td>46.00</td>
</tr>
<tr>
<td>3</td>
<td>40.00</td>
</tr>
</tbody>
</table>

**Expected Revenues**

Using the optimal revenues from the final stage, i.e., \( f(S_1) \), we compute the expected revenues for each combination of state \( s \) and decision \( x \) at stage 2.

**Stage 2**

<table>
<thead>
<tr>
<th>( S_1 )</th>
<th>( f_2(S_1) )</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>159.80</td>
</tr>
<tr>
<td>1</td>
<td>118.32</td>
</tr>
<tr>
<td>2</td>
<td>89.00</td>
</tr>
<tr>
<td>3</td>
<td>40.00</td>
</tr>
</tbody>
</table>

**Expected Revenues**

If \( s = 2 \) and \( x = 0 \),

\( \text{expected revenue is} \)

\[ P(\text{failure})[\text{this week's expected revenue} + \text{expected future revenue}] + P(\text{success})[\text{this week's expected revenue} + \text{future expected} + \text{revenue}] \]

\[ = 0.2777(0 + 34) + 0.7222(100 + 34) \]

\[ = 0.2777(0 + 40) + 0.7222(100 + 46) \]

\[ = 116.32 \]

**Stage 2**

<table>
<thead>
<tr>
<th>( S_2 )</th>
<th>( f_3(S_2) )</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>159.80</td>
</tr>
<tr>
<td>1</td>
<td>125.00</td>
</tr>
<tr>
<td>2</td>
<td>125.00</td>
</tr>
<tr>
<td>3</td>
<td>125.00</td>
</tr>
</tbody>
</table>

**Optimal Decisions**

If the machine is replaced, there is a cost of $50. There is a 90% probability that the replacement does not fail, so the expected revenue is $0.9(100)-50 = 40.
The total expected revenue if we have a week-old component at stage 6, is $414.88.

The optimal policy for all stages except 1 & 2 (the final 2 stages) is to replace only if the component is age ≥ 3 (or broken-down).