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One of the systems of a communication satellite consists of four 

unreliable components (e.g., antenna, transmitter, power source, 

amplifier, etc.)  each of which are necessary for successful operation of 

the satellite—the probabilities that a component survives the planned 

lifetime of the satellite (i.e., the reliabilities)  are shown below: 
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Assuming that component failures are independent,

Reliability of system

= P{components 1 through 4 survive} 

= P{#1 survives} × P{#2 survives} × P{#3 survives} × P{#4 survives}

= 0.70 × 0.85 × 0.75 × 0.88 = 39.27%

This is an unacceptably low system reliability, and so redundant units 

of one or more components will be used in the design. 
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  The reliability of a component may be increased by 

including redundant units! 

Reliability of component #1 

= P{at least one unit survives} 

= 1 – P{both units fail} 

= 1 – 0.30 × 0.30 = 91% 

This assumes what is referred 

to as “hot standby”, i.e., a 

standby unit may fail even 

before it is put into service!
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By using redundant units of each component, the system reliability 

can be dramatically increased—for example: 

( ) ( ) ( ) [ ]2 2 2System
1 0.30 1 0.15 1 0.25 0.88

Reliability

0.91 0.9775 0.984375 0.88 77.0551%

= − × − × − ×

= × × × =
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The problem faced by the designer is to maximize the system 

reliability, subject to a restriction on the total weight of the system. 

Component 1 2 3 4

Weight (kg) 1 2 1 3 

Total weight must not exceed 12 kg.

(Total weight of one unit of each component is 7 kg, leaving 5 kg 

for redundant units.) 
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Reliability (%) vs. # redundant units 

Component 1 unit 2 units 3 units 

1 70 91 97.3 

2 85 97.75 99.6625 

3 75 93.75 98.4375 

4 88 98.56 99.8272 

We will assume that no more than three units of any component will 

be included! 
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Dynamic Programming Model 

Stage: n component type

Decision: xn # of units of component n included in system

State: sn slack weight, i.e.,  # kg available 
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We impose a sequential decision-making structure on the 

problem by supposing that we consider the components one at a 

time, deciding how many units to include based upon the 

available weight capacity. 

Arbitrarily we will use a “backward” order in what follows!

That is, imagine that we first consider how many units of 

component #4 are to be included when we begin with 12 kg of 

available capacity, while component #1 is the last to be 

considered.

Component 
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Component
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Component
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Optimal Value Function 

fn(sn) = maximum reliability of the subsystem consisting of 

devices n, n-1, … 1,  if sn kg of available capacity 

remains to be allocated. 

Recursive definition of function 

( ) ( ) ( ){ }1
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maximum  1 n
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APL  function definition 
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Component #1: reliability = 70%, weight = 1 kg. 

Stage 1 
    s \ x:  1       2       3  | Maximum
   1  |  0.7000¯99.9999¯99.9999|  0.7000
   2  |  0.7000  0.9100¯99.9999|  0.9100
   3  |  0.7000  0.9100  0.9730|  0.9730

etc.
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  Component #2: reliability = 85%, weight = 2 kg. 

Stage 2 
  s \ x:  1       2        3   | Maximum

   3  |  0.5600 ¯99.9999 ¯99.9999|  0.5600
   4  |  0.7280 ¯99.9999 ¯99.9999|  0.7280
   5  |  0.7784   0.6720 ¯99.9999|  0.7784
   6  |  0.7784   0.8736 ¯99.9999|  0.8736
   7  |  0.7784   0.9341   0.6944|  0.9341
   8  |  0.7784   0.9341   0.9027|  0.9341
   etc. 

For example, suppose that we have 6 kg of capacity remaining, i.e., s2 = 6, and we 
choose to include 2 units of component #2.  Then we obtain 97.75% reliability of 
subsystem #2 and arrive at stage 1 (component #1) with 6-2×2=2 kg of capacity 

remaining, so that we can achieve 91% reliability ( ( )1 2f =0.91 ) in subsystem #1.

Hence  the subsystem of components 1&2 will have reliability 0.9775×0.91 = 0.8736
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Component #3: reliability = 75%, weight = 1 kg. 

Stage 3 
    s \ x:  1       2       3  | Maximum
   4  |  0.4200¯99.9999¯99.9999|  0.4200
   5  |  0.5460  0.5250¯99.9999|  0.5460
   6  |  0.5838  0.6825  0.5513|  0.6825
   7  |  0.6552  0.7298  0.7166|  0.7298
   8  |  0.7006  0.8190  0.7662|  0.8190
   9  |  0.7006  0.8757  0.8600|  0.8757
   etc. 
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Component #4: reliability = 88%, weight = 3 kg. 

Stage 4 
    s \ x:  1       2       3  | Maximum
   7  |  0.3696¯99.9999¯99.9999|  0.3696
   8  |  0.4805¯99.9999¯99.9999|  0.4805
   9  |  0.6006¯99.9999¯99.9999|  0.6006
  10  |  0.6422  0.4140¯99.9999|  0.6422
  11  |  0.7207  0.5381¯99.9999|  0.7207
  12  |  0.7706  0.6727¯99.9999|  0.7706

Only the last row of this table need be computed to find the optimal 
reliability with 12 kg of capacity!
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Summary of computations

Stage 4

Current Optimal Optimal   Next
 State Decision Value    State
cap 7  1 units  0.3696  cap 4
cap 8  1 units  0.4805  cap 5
cap 9  1 units  0.6006  cap 6
cap 10 1 units  0.6422  cap 7
cap 11 1 units  0.7207  cap 8
cap 12 1 units  0.7706  cap 9

Stage 3

Current Optimal Optimal   Next
 State Decision Value    State
cap 4  1 units  0.4200  cap 3
cap 5  1 units  0.5460  cap 4
cap 6  2 units  0.6825  cap 4
cap 7  2 units  0.7298  cap 5
cap 8  2 units  0.8190  cap 6
cap 9  2 units  0.8757  cap 7

Stage 2

Current Optimal Optimal   Next
 State Decision Value    State
cap 3  1 units  0.5600  cap 1
cap 4  1 units  0.7280  cap 2
cap 5  1 units  0.7784  cap 3
cap 6  2 units  0.8736  cap 2
cap 7  2 units  0.9341  cap 3
cap 8  2 units  0.9341  cap 4

Stage 1

Current Optimal Optimal   Next
 State Decision Value    State
cap 1  1 units  0.7000  cap 0
cap 2  2 units  0.9100  cap 0
cap 3  3 units  0.9730  cap 0
cap 4  3 units  0.9730  cap 1
cap 5  3 units  0.9730  cap 2
cap 6  3 units  0.9730  cap 3
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The maximum reliability, then, given a 12 kg  weight 

restriction, is ( )4 12f = 77.06 %

By a “forward pass” through the tables, we can 

determine the optimal design: 

 stage  state     decision
    4   cap 12    1  units
    3   cap  9    2  units
    2   cap  7    2  units
    1   cap  3    3  units
    0   cap  0

That is, the optimal design includes 1 of component #4, 2 
each of components #2 & #3, and 3 of component #1. 
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• What reduction in reliability would occur if the 

weight restriction were 11 kg rather than 12? 

• What is the optimal design with a weight restriction 

of 11 kg? 
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 Integer Programming Model 

Define binary decision variables: 

Xin  = 1 if n units of component i are included

 in the system 

Xin = 0 otherwise 

Notation:

Component 
i Ri1 Ri2 Ri3

1 0.70 0.91 0.973 

2 0.85 0.9775 0.996625 

3 0.75 0.9375 0.984375 

4 0.88 0.9856 0.998272 

Objective:
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In order to linearize the objective, we will instead 

maximize the logarithm of the reliability:

( )
4 3

1 1

  ln in in
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Component 
i

ln Ri1 ln Ri2 ln Ri3

1 ¯0.35667 ¯0.094311 ¯0.02737

2 ¯0.22314 ¯0.040822 ¯0.008032

3 ¯0.28768 ¯0.064539 ¯0.01575

4 ¯0.12783 ¯0.014505 ¯0.001729
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LINGO model:
SETS:
  COMPONENT / A B C D/: 
    WEIGHT; 
  UNITS / 1..3/; 
  LOG(COMPONENT,UNITS): LNR, X;
ENDSETS

DATA:
  WEIGHT = 1 2 1 3; 
  WMAX = 12; 
  LNR = -0.35667 -0.094311 -0.027371
        -0.22314 -0.040822 -0.0080322
        -0.28768 -0.064539 -0.015748
        -0.12783 -0.014505 -0.0017295; ! LNR is log of reliability;
ENDDATA

MAX = @SUM( COMPONENT(I): @SUM(UNITS(N):LNR(I,N)*X(I,N))) ; 

@SUM( COMPONENT(I): @SUM(UNITS(N): WEIGHT(I)*N*X(I,N)))<= WMAX; 

@FOR (COMPONENT(I): 
@SUM (UNITS(N): X(I,N))=1;       );

@FOR (COMPONENT(I): 
@FOR (UNITS(N): @BIN (X(I,N)) ) ); 

LINDO model: 
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MAX   - .35667 X( A, 1) - .094311 X( A, 2) - .027371 X( A, 3) 
      - .22314 X( B, 1) - .040822 X( B, 2) - .0080322 X( B, 3) 
      - .28768 X( C, 1) - .064539 X( C, 2) - .015748 X( C, 3) 
      - .12783 X( D, 1) - .014505 X( D, 2) - .0017295 X( D, 3) 
 SUBJECT TO 
 2]  X( A, 1) + 2 X( A, 2) + 3 X( A, 3) + 2 X( B, 1) + 4 X( B, 2) 
      + 6 X( B, 3) + X( C, 1) + 2 X( C, 2) + 3 X( C, 3) + 3 X( D, 1) 
      + 6 X( D, 2) + 9 X( D, 3) <=   12 
 3]  X( A, 1) + X( A, 2) + X( A, 3) =    1 
 4]  X( B, 1) + X( B, 2) + X( B, 3) =    1 
 5]  X( C, 1) + X( C, 2) + X( C, 3) =    1 
 6]  X( D, 1) + X( D, 2) + X( D, 3) =    1 
 END 
 INTE    12 
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Optimal  Solution:

Objective value:   - 0.2605620 

Variable           Value        Reduced Cost 
X( A, 3)        1.000000           0.2737100E-01 
X( B, 2)        1.000000           0.4082200E-01 
X( C, 2)        1.000000           0.6453900E-01 
X( D, 1)        1.000000           0.1278300 

Note that exp{ − 0.2605620) = 0.77062 

which is in agreement with the dynamic programming 

solution.
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Optimal  Design 
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