
DP.Proto

Stage	3				Stage	2				5	toge	,			
decision X ₃					decision X ₂					decision X ₁					
	1	2	3	4		1	2	3	4			1	2	3	4
۳ <u>۱</u>	3	4	1	4	ر ۲ ا	0	1	5	4	l d	51	2	1	3	0
	2	4	3	3	a, 2	5	4	2	0	Ĭ	í. 2	4	3	2	0
4 د م <i>Hats</i>	3	4	5	4	18 3	2	3	3	0	4 C 4 C	ξ3.	3	5	4	3
\$ 4	4	2	3	2	ሯ 4	3	5	4	2	1	34	0	4	3	5
5	0	0	0	0	5	0	0	0	0		5	0	0	4	3
The return $R_{p}(S_{p} X_{p})$ at stage p is a function of															

The return, $R_n(S_n,X_n)$, at stage n is a function of both the state S_n and the decision X_n . E.g., $R_3(2,1) = 2$ is the return if the system is

in state 2 at stage 3, and the decision is $X_3 = 1$.

©Dennis Bricker, U. of Iowa, 1997

Optimal Value Function

 $f_n(S_n) = \max \operatorname{maximum value of current \& remaining stages, if state is <math>S_n$

Recursive definition:

$$f_{n}(S_{n}) = \begin{cases} maximum_{X_{n} \in \{1,2,3,4\}} \left\{ R_{n}(S_{n}, X_{n}) + f_{n-1}(T_{n}(S_{n}, X_{n})) \right\} \\ for n=3, 2, 1 \\ 0 & for n=0 \end{cases}$$

- A deterministic DP example with
- one state variable
- one decision variable
- three stages
- irregular (tabulated) returns & transitions

©Dennis Bricker, U. of Iowa, 1997

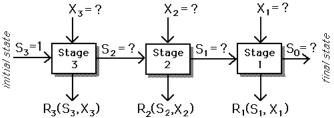
Both state & decision at each stage are discrete, with possible values:

State Vector						
i s[i]					5 5	

Decision Vector i 1 2 3 4 x[i] 1 2 3 4

©Dennis Bricker, U. of Iowa, 1997

Transitions		
Stage 3 decision X ₃ 1 2 3 4	Stage 2 decision X ₂	Stage I decision X ₁
$ \begin{array}{c} & 1 & 2 & 3 & 4 \\ & 3 & 2 & 1 & 4 \\ & 4 & 3 & 3 & 4 \\ & 4 & 3 & 3 & 4 \\ & 5 & 2 & 4 & 2 & 1 \\ & 5 & 0 & 0 & 0 & 0 \end{array} $	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c} 1 & 2 & 3 & 4 \\ 0 & 1 & 1 & 2 & 1 & 0 \\ 1 & 1 & 4 & 3 & 2 & 0 \\ 0 & 2 & 3 & 5 & 3 & 4 & 2 \\ 3 & 5 & 3 & 4 & 2 \\ 5 & 0 & 0 & 4 & 3 & 4 \\ 0 & 0 & 5 & 5 \end{array} $


If the system is in state S_n at stage n, and the decision is X_n , a transition is made to the state $S_{n-1} = T_n(S_n, X_n)$, a function of both $S_n \And X_n$.

©Dennis Bricker, U. of Iowa, 1997

APL code

```
\begin{array}{l} \underbrace{ \begin{array}{c} \mbox{Nemhauser DP example: tabulated returns & transitions} \\ \hline \mbox{VALUE+F N;t} \\ \mbox{$n$} \\ \mbox{$n$} \\ \mbox{$n$} \\ \mbox{$n$} \\ \mbox{$optimal Value Function for Example DP Model $n$} \\ \mbox{$n$} \\ \mbox{$optimal Value Function for Example DP Model $n$} \\ \mbox{$n$} \\ \mbox{$optimal Value Function for Example DP Model $n$} \\ \mbox{$n$} \\ \mbox{$optimal Value Function for Example DP Model $n$} \\ \mbox{$n$} \\ \mbox{$optimal Value Function for Example DP Model $n$} \\ \mbox{$n$} \\ \mbox{$optimal Value Function for Example DP Model $n$} \\ \mbox{$optimal Value Function for Example DP Model $n$} \\ \mbox{$optimal Value Function for Example DP Model $n$} \\ \mbox{$optimal Value Function for Example DP Model $n$} \\ \mbox{$optimal Value Function for Example DP Model $n$} \\ \mbox{$optimal Value Function for Example DP Model $n$} \\ \mbox{$optimal Value Function for Example DP Model $n$} \\ \mbox{$optimal Value Function for Example DP Model $n$} \\ \mbox{$optimal Value Function for Example DP Model $n$} \\ \mbox{$optimal Value Function for Example DP Model $n$} \\ \mbox{$optimal Value Function for Example DP Model $n$} \\ \mbox{$optimal Value Function for Example DP Model $n$} \\ \mbox{$optimal Value Function for Example DP Model $n$} \\ \mbox{$optimal Value Function for Example DP Model $n$} \\ \mbox{$optimal Value Function for Example DP Model $n$} \\ \mbox{$optimal Value Function for Example DP Model $n$} \\ \mbox{$optimal Value Function for Example DP Model $n$} \\ \mbox{$optimal Value Function for Example DP Model $n$} \\ \mbox{$optimal Value Function for Example DP Model $n$} \\ \mbox{$optimal Value Function for Example DP Model $n$} \\ \mbox{$optimal Value Function for Example DP Model $n$} \\ \mbox{$optimal Value Function for Example DP Model $n$} \\ \mbox{$optimal Value Function for Example DP Model $n$} \\ \mbox{$optimal Value Function for Example DP Model $n$} \\ \mbox{$optimal Value Function for Example DP Model $n$} \\ \mbox{$optimal Value Function for Example DP Model $n$} \\ \mbox{$optimal Value Function
```


Optimal Solution No.

STATE

444

STAGE

3210

2

КÞ

DECISION

24

©Dennis Bricker, U. of Iowa, 1997