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Abstract: Minimizing a nondecreasing separable concave cost function over a polyhedral set arises in
capacity planning problems where economies of scale and fixed costs are significant, as well as production
planning when a learning effect results in decreasing marginal costs. This is an NP-hard combinatorial
problem in which the extreme points of the polyhedral set must be enumerated, each of them a local
optimum. Branch-and-bound methods have been frequently used to solve these problems. Although it has
been shown that in general the bound provided by the surrogate dual is tighter than that of the Lagrangian
dual, the latter has generally been preferred because of the apparent computational intractability of the
surrogate dual problem. In this paper we describe a branch-and-bound algorithm that exploits the superior
surrogate dual bound in a branch-and-bound algorithm without explicitly solving the dual problem. This is
accomplished by determining the feasibility of a set of linear inequalities.
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1. Introduction

Capacity planning is the first, and perhaps the most fundamental, problem of production
management. The algorithm proposed and demonstrated here is intended to assist the
engineer responsible for the design of a production facility or system of production
facilities. Taking into full account the fixed costs of construction and installation,
economies of scale, and a matrix specifying inputs and outputs per unit of capacity, the
algorithm selects from a set of available process units a subset of units and their
capacities which minimize total capital investment costs and meets any requirements on
system output and limits on system input.
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where x;j is the capacity of process j
ajj is the input-output coefficient of process j (if positive, ajj is the output of
product i per unit capacity of process j; if negative, the input of product i per

unit capacity of process j).
bj is the required net output of product i if positive, or if negative, (the negative

of) the limit on resource i (labor, raw material, space, etc.)
fj isthe investment cost function of process j:
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where ¢, is a nonnegative fixed cost of installing process j and the log-linear function

ajxjﬁj is the variable cost (0 <f;< 1). A similar model arises in production planning

when a learning effect results in decreasing marginal costs. (See, for example, Hax and
Majluf [14] and Yelle [27].) This problem subsumes the linear fixed-charge problem
(when g =1) or the pure fixed charge problem ( g =0).

This problem is essentially a combinatorial one, in that its solution must be one of the

- . m+n _ . : .
finite number (viz., ( }) of basic solutions of the system of linear constraints. That
m

is, the solution is determined by the choice of processes to be included in the production
facility, together with a choice of those input/output requirements to be slack. These
choices determine a basis and thereby a basic solution with its process capacities
specified.

2. The Nonconvex Problem
The capacity planning problem described above belongs to a more general class of
optimal resource allocation problems:

P: Find ®=Min{f(x):Ax2b,xeC} (5)
where Ae R™", be R", Cis a closed cone within R? (the nonnegative orthant), and the
cost function f :R] has the properties:

i) f is explicitly quasiconcave on C, i.e, f is quasiconcave and for all
x €C, x,€C, and x, =Ax +(1-1)x, where 0<A<1, f(x)> f(x,) implies
that f(x,)> f(x,)= I\/Iin{ f(x),f (xz)}. (In particular, concavity of f implies
explicit quasiconcavity.)

i) f is lower semicontinuous on C, i.e., the level set {x eC: f(x) < k} is closed

for all k.
iii) f isisotoneonC,i.e. x <x, impliesthat f(x)< f(x,).

iv) f ishomogeneous, ie., f(0)=0.

The Cauchy-Weierstrass existence theorem, given properties (ii) and (iii), assures us that
problem P, if feasible, assumes its minimum value in the feasible region. If P is
infeasible, then by adopting the convention that the minimum of the empty set is +o, we
obtain a well-defined minimum. After discussing the more general case, we shall in later
sections present results for the case in which C is a closed polyhedral cone, assuring us
that the minimum of f in problem P is attained at a vertex of the feasible region.

A large number of resource allocation problems in which economies of scale are
significant are included in this general formulation, including many in logistics, such as
facility location, production planning, transportation planning, as well as plant capacity
planning.



The problem of optimally allocating resources when economies of scale are prevalent is
fraught with pitfalls, in that mathematical programming algorithms will quite often
converge to local but not global solutions. McCormick [20] surveyed methods proposed
at that time for obtaining globally optimal solutions to nonconvex problems, and
concluded:
“The branch-and-bound approach, relying on the use of underestimating convex
functions, seems the most reasonable approach at this time. The efficiency it
offers depends upon how quickly the regions which do not contain the global
solution are eliminated.”
Since that time, several other classes of algorithms for problem P have been proposed,
including extreme point ranking, concavity cut reduction, and outer approximation.
Benson [2] states that
"In recent years, probably the most popular technique used in algorithms
for problem P is branch-and-bound.”
In addition to the deterministic algorithms which have been mentioned above, many
stochastic algorithms have been proposed for global optimization. (See Bomze [4].) We
will restrict the discussion to the class of branch-and-bound algorithms, of which our
algorithm is a member.
In general, branching consists of partitioning the set C (more generally not a cone, and

usually a hyper-rectangle) into disjoint subsets {Ck -k :1,2,...,K} and the associated
subproblems

P: Find @, =Min{f(x):Ax>b,xeC,| (6)
are either solved, or else fathomed by demonstrating that &, exceeds an incumbent

value, i.e., a value known to be attainable.

Falk [8] developed much of the theoretical basis for this approach, assuming C is
compact, while Falk and Soland [11] and Jones and Soland [17] describe
implementations when f is a piecewise-linear separable function and the C, ’s are closed

hyperrectangles. A lower bound on ®, is obtained by replacing f by its convex

envelope over the feasible region. This approach has been applied to more structured
problems in time-cost tradeoffs in project scheduling [10], in transportation planning
[22], and in facility location [23].

Another branch and bound approach (cf. Carillo [7] and Horst [16]) assumes that C is a
simplex, and branches by creating simplex-partitions {Ck}. Lower bounds are again

obtained by use of the convex envelope of f taken over C,, which is represented in
terms of the vertices of C, .
Making use of the fact that, when f is concave, the global optimizer of P also optimizes

the convex envelope of f taken over the feasible region, Falk and Hoffman [9] presented

an algorithm which represents both the feasible region (assumed to be polyhedral and
compact) and the convex envelope of f taken over the feasible region, in terms of its
extreme points. The problem is initially relaxed by selecting a subset of the constraints,
and a master problem is formed using the extreme points of the feasible region of this
relaxation. A column generation scheme is then used to refine this (outer)
approximation.



By seeking local optima and generating cuts which eliminate these local optima, cutting
plane algorithms are also able to find the global optimum. (cf. Cabot [6], Taha [24], and
Tui [25].)

Falk [8] considered the problem P assuming only that f is lower semicontinuous and C
compact, and demonstrated that the solution of the bounding problem obtained by
replacing f :C by its convex envelope taken over the convex hull of C is equal to the

solution of the Lagrangian dual of the original problem. Thus the strength of the bound
which is obtained is directly related to the size of the Lagrangian duality gap. Greenberg
and Pierskalla ([12], cf. also [13]) demonstrated that the surrogate dual problem, to be
described below, has in general a smaller duality gap, thereby providing a more effective
bound. The surrogate dual is lesser known and less frequently utilized, however, because
of its apparent computational intractability.

If C is not compact, but is a closed cone in the nonnegative orthant and f has the

properties assumed in P, then for the purpose of bounding a solution of our problem P
in a branch and bound algorithm, one need not solve the surrogate dual problem in order
to make use of its superior bound in eliminating regions not containing the global
optimizer [5]. Instead, the effectiveness of the surrogate dual as a bound may be tested
by a search for a feasible solution of a system of linear inequalities. Success in this
search guarantees that the surrogate dual will eliminate the region being considered.
Since solving a linear system of inequalities (a computationally tractable problem) will
take advantage of the superior performance of the intractable surrogate dual as a
bounding problem, a new class of algorithms may be designed which provides
alternatives to existing algorithms.

3. SURROGATE DUALITY
Surrogate constraints were first used in implicit enumeration algorithms for zero-one
integer linear programming problems. A surrogate constraint is a convex combination of
an original set of inequality constraints. The constraint thus obtained is implied by the
original set of constraints, so that fathoming tests may be performed on this derivative
constraint as a substitute for the original constraints.
The theory of surrogate duality was developed by Greenberg and Pierskalla [12] for more
general mathematical programming problems. Suppose that the original primal problem
is

P':  Find ®=Min{f(x):g(x)=b,xeX}, (7)
where f:R"—R', g:R"—>R", and X is a closed subset of R". Given a vector of

surrogate multipliers u € R (the nonnegative orthant), a surrogate constraint ug(x) >Uub
is defined. The surrogate problem is therefore

S(u)=Min{f(x):ug(x)>ub,xe X} (8)
Since the optimal solution of (7) is feasible in the surrogate problem (8), S(u) clearly

provides a lower bound for the solution of (7). The surrogate dual problem is to find the
greatest lower bound provided by the family of surrogate problems, i.e.,

S =Max S(u) (9)

u=0



The duality gap of the surrogate dual is less than or equal to that of the more familiar
Lagrangian dual, i.e.,

LSS<®d (10)
where

L=Max L(2)
and
L(4)=Min f(x)-2[g(x)-b]

xeX

Even though there may exist a gap between the optimal values of the primal and dual
problems when the objective function or feasible region is not convex, the surrogate dual
(9) can provide a lower bound for use in fathoming subproblems in a branch and bound
algorithm.

Because of the economies of scale and lack of any upper bounds on x (other than those
which might be included in the relaxed constraints Ax >b), the optimal vector of activity
levels satisfying the single surrogate constraint uAx >ub need have at most one positive
activity level. That is, the minimum of an explicitly quasiconcave function occurs at an
extreme point of the feasible region:

Theorem 1 (Martos [19]). ¢(x) is quasiconcave in the convex set X < R", if

and only if for each nonempty polyhedron Y* < X any global vertex-minimum
point of ¢(x)in Y* is a global minimum pointin Y*.

Thus, considering problem P and its surrogate dual, letting A' denote column j of the
matrix A, and e; the jth unit coordinate vector, the extreme points of this feasible region,

other than perhaps the origin, are each of the form (U%Aj)ei’ where (U%Aj)zo. If

ub <0, then x=0 is both feasible and optimal, while if ub>0 and uA<0, then the
surrogate problem is infeasible. Define the function f, (t) =f (tej).

Our interest lies in whether S exceeds some quantity V, e.g., an incumbent value.

Elsewhere we have proved the following result which states that the condition S >V

may be tested by a search for a feasible solution of the set of linear inequalities:
Theorem 2 ([Bricker [5]). Let f:R! be an isotone, lower semicontinuous,

explicitly quasiconcave and homogeneous function, A< R™", and be R™. Then
the surrogate dual solution of the primal problem

Min{f (x): szb,xzo}
exceeds a finite scalar value V if and only if one of the following conditions is
satisfied:
(a) b<0 and V>0.
(b) the primal problem is infeasible.
(c) there exists a solution of the linear system



ulb—f*(V)A]20,jel,
uA’ <0,jeld,
ub>0,u>0

where f, (t)z f(tej), ej being the jth unit coordinate vector, and

Jl:{j: f (t)=V forsometzo}

J,={j:f;(t)<v forallt=0
This feasibility test may be interpreted geometrically as a search for a hyperplane with
nonnegative normal vector, separating the vector b from each of the points
{fj’l (V)Aj fje Jl} , the origin, and the rays {Aj fje Jz} . This test can also be given an
economic interpretation: if V is a capital investment budget for a production facility, then

fJ.’1 (V) is the capacity of process j if the budget were allocated exclusively to that

process. If this capacity is finite, f j’l (V)A’ is then the vector of outputs of process j.
The test above then amounts to searching for a set of inputsu,,u,,...u,, one for each

output, with the property that the combined value of the required outputs b,b,,...b,

exceeds the combined value of the outputs of each activity when operated at capacity. If
the budget were to permit an unlimited level of activity j then u is to be selected so that

the combined values of the outputs of a unit level of activity, i.e., uA’, must be negative,
i.e., the value of inputs (negative components of A’) must exceed the value of outputs
(positive components of Al). If such a set of values u>0 can be found, then we can
conclude that V< S .

4. Example |
Consider the simple problem
@ = Min fy(x1) + fa(x2) + f3(x3)
s.t. 1.25x;+ 3%, +5x3>15 (11)
A1+ 2% + X3 211
X120, X,>0, X3=0
where the functions f, (j =1, 2,3) are of the form (4), with ¢, «, and S as specified in

Table 1.

Variables x1, X2, and x3 might represent the levels of activity of three proposed production
facilities, while 15 and 11 are the required outputs of two products. The operating cost of
facility j includes a fixed charge ¢, for opening the facility plus a production cost acjxjfgj

which exhibits economies of scale.



The inverse function fj’1 represents the activity level of facility as a function of the
operating budget allocated to it. Thus, for an operating budget V, facility j may operate at

a level
V-9, }/ﬂj )
F1(V)= La—JJ if V=g
0 if 0<V <,
Since clearly ‘Df +o0 and b >0, the test of the validity of the inequality

S>V
is, according to Theorem 2, the test of the feasibility of the linear system

[15-1.25f,* (V) |u, +[11-4f* (V) ]u, >0
[15-3.00f,* (V) Ju, +[11-2f,*(V) |u, >0 (12)
[15-5.00f,* (V) Ju, +[11— £,*(V)]u, >0

Suppose we apply the surrogate test above, “arbitrarily” using V=4.8. Then f J.*1(4.8) IS

5.05192, 2.08493, and 4.00213 for j =1, 2, 3, respectively. To determine whether the
surrogate dual value exceeds 4.8, we need to test the feasibility of

8.68510 u, —9.20767 u, >0
8.74522 u, +6.83015u, >0

-5.01066 u, +6.99787 u, >0
u,>20,u, >0

The system of inequalities (13) is feasible (e.g., u1 = 0.52, u; = 0.48), implying that the
surrogate dual exceeds 4.8. (In fact, an enumeration of the basic solutions will determine
that the optimal solution is found at x=(2.13333,0, 2.46667) which has cost of

7.15751. The surrogate duality gap for this problem is therefore at Ieast@
(7.15751—-4.8)/7.15751 or approximately 33%.

(13)

5. Implementation
In what follows, we will consider separable concave investment cost functions

f(x):_z;, f (Xj)

=

where f;(x;) satisfies the form (4) for a given fixed cost 4, >0, and parameters c;> 0
and 0 <g;< 1. The elasticity j; accounts for economies of scale. (For example, if the

elasticity B, is 0.9, then increasing the capacity X by 10% increases the variable portion
of the investment cost fj by approximately 9%) We will refer to the variables x; as
structural variables indexed by J={1,2,..,n}, and the surplus variables in the
inequalities Ax > b as logical variables indexed by | :{1, 2,..., m}. As explained above,

since we are enumerating the bases of a set of linear inequalities, we will construct an
enumeration tree with subproblems defined by a specification of those variables which


Dennis Bricker
Note
Feasibility of (13) implies
S^ > 4.8.  
=> 7.15751-S^ < 7.15751-4.8
=> (7.15751-S^)/7.15751 < (7.15751-4.8)/7.15751 = 0.33
So the duality gap, 
(7.15751-S^)/7.15751,
is less than 0.33, i.e., NO MORE THAN 0.33.


have been forced into the basis as well as those which have been excluded from the basis.
Partition the structural variables by
J=J"ulul’
where J* and J° denote the indices of the structural variables which have been forced
into and excluded from the basis, respectively, and J' denotes the indices of the
structural variables whose status has not yet been determined (free variables). Likewise,
partition the set of logical variables | by
I=1"ul°ul’
where 17, 1°,and 1" correspond in meaningto J*, J°, and J'. Then the subproblem
at a node of the enumeration tree is
> ¢+ Min 3 (x))
jed* jed®
st. Y ax,>b,iel” (14)
jed®
D ax;=b,iel
jed°
Zaijxj >h,iel
jed°

X;20,jed ul’ x;=0 forx,eJ°.

B ifio gt
f_j(Xj)= a;x; if jed
¢ +ax’ ifjel’

where

If the incumbent value is V, then the current subproblem may be fathomed, provided that
the surrogate dual value exceeds V. This condition is satisfied if there exists a

nonnegative solution u e R™ to the inequalities
ulb-f*(V)A |20, jeJ°
ub>0
u>0,igl®

that is,

m }/ﬁl
z bi—£iJ a; [u; =0, jel”

i=1 a;

m V —@. }'/Hi
Zbi_(_‘ﬂ 3 =0, jel’

&,

(15)

u;20 foriel*ul’u =0 foriel®

The search for a feasible solution of (15) may be performed by one of several
alternatives, e.g., (i) an adaptation of the relaxation algorithm of Agmon [1] and of



Motzkin and Schoenberg [21], a method often used in a search for optimal multipliers
when solving Lagrangian dual problems (where it is known as the subgradient algorithm
[15]), (ii) the ellipsoid algorithm of Khachian [18] (cf. also Bland et al. [3]), or (iii) a
Phase-One Simplex LP algorithm. The first two are iterative methods which converge to
a feasible solution (the ellipsoid method in a number of iterations polynomial in the
length of the problem data string) if such a solution exists. In practice, we will terminate
the selected algorithm after a specified number of iterations, abandoning the attempt to
fathom the node of the enumeration tree.

Fathoming process.

At each node of the branch-and-bound tree, we use the following procedure as fathoming

process:

Step 1: fixed costs of variables which have been forced into the basis are summed.

Step 2a: if it is greater than the incumbent, the node is fathomed.

Step 2b: Otherwise, an attempt is made to fathom by the surrogate bound. If that fails,
then try obtaining a feasible solution to subproblem and possibly fathom by
infeasibility or update incumbent. This attempt is abandoned if not successful
within a specified number of iterations.

Step 3: If both of these two attempts to fathom fail, separate subproblem into two
subproblems and fathom each of them.

Linear programming approximation.
If a node cannot be fathomed, before branching we compute an upper bound on the
optimum by finding a feasible solution to the problem (14). This is accomplished by
solving the optimization problem (14) with the objective replaced by a linear
approximation cx, i.e.,
D g +Min Y cx, (16)
jed*® jedrudf

where c; is chosen to be either

: : ub : . —
(i) marginal costs at AT (where u is the multiplier vector upon termination of the
u

i1
relaxation algorithm), i.e., c; :g—f(%j =a,p, (uTbJ] , or
x\u u

(ii) the average unit cost
( ub
fil —
_ \uA’

(See Figure 1.) In either case, the value of the objective function of (16), evaluated at the
solution of the LP, provides an upper bound on the optimum which, if less than V,
becomes the new incumbent. (If the LP is determined to be infeasible, then of course the
node is fathomed.)
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Branching process.

Branching must be done from nodes which cannot be fathomed. This is accomplished by
selecting a variable and constructing two descendent nodes—one in which the variable is
forced into the basis, and the other in which the variable is excluded from the basis.
Logical variables will be selected only when no free structural variables remain. The
choice of structural variable may be made based upon one of the following criteria:

Q) select the structural variable with largest cost coefficient « .

(i) select the structural variable with largest fixed cost ¢.

(iii)  select the structural variable with largest cost at UbuAj .
If no free structural variables remain, the logical variable corresponding to the largest
surrogate multiplier will be selected for branching.

Test Problems.

Random problems were generated according to the following scheme:

Q) integer constraint coefficients are uniformly distributed in a specified interval.

(i) a specified density o is achieved by replacing randomly-selected constraint
coefficients with zero (while avoiding the creation of columns with zero density).

(iii)  fixed costs (¢), cost coefficients («) and exponents () are uniformly
distributed in specified intervals.

(iv)  the right-hand-side vector b was assigned by fixing a specified fraction o of the
variables at a specified value & and evaluating the linear constraint functions at
this point.

6. Example I1.
A problem with 5 constraints and 20 structural variables was randomly generated with
the following characteristics:
e constraint coefficients are uniform in [-2, +10]
e density 75%
e right-hand-sides b obtained by evaluating the linear functions after fixing
e 25% of the variables at the value 5
e fixed costs ¢ uniformin [2,5]
e cost coefficient « uniform in [0.5, 2.0]
e cost exponent £ uniformin [0.5, 1]
The cost parameters and constraint parameters are shown in Tables 2 and 3, respectively.

Up to 50 iterations of the relaxation algorithm will be used here for testing the surrogate
dual bound. The LP, which is solved at nodes at which 3 or more variables have been
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either forced into or out of the basis, uses as its objective the marginal costs at the point
D ub,
with x; = Z‘:T where u is the most recently computed surrogate multiplier vector.
]
I Branch-&-Bound Algorithm
Current Parameters

The current values of parameters to be used in the branch-
and-bound algorithm are:
TAU = reflection factor = 1.5
EPS1 = tolerance for fathoming = 0.0001
Max_Relax = max # relaxation iterations = 50
Do_LP_level = level of tree at which LP is attempted = 3
Rule for choosing structural variable for branch based upon:
Maximum Cost of F(Ub/UA)
LP objective computed by
marginal cost at X=Ub/UA

R R R e R R S R R e R e

A total of 497 nodes of 53130 ( 0.935 %) were examined,
of which
432 nodes were fathomed by surrogate dual bound,
4 nodes were fathomed by excessive fixed costs,
3 nodes were fathomed by infeasibility of LP.

The total number of basic solutions (both feasible and infeasible) of the constraints is

0
( 5 j: 53130. In this example, 497 nodes of the enumeration tree were generated, which

is less than 1% of the number of basic solutions. The overwhelming majority of these
nodes were fathomed by the surrogate dual. The optimal solution (shown in Table 4) has
two positive structural variables, contributing approximately 44% and 56%, respectively,
to the total cost.

7. Computational Experience and Analysis of results

Although the algorithm does not require the explicit computation of the surrogate dual
value, in the experiments below the effort was expended to compute and report this dual
value for the root node of the enumeration tree, i.e., the original problem.

The proposed algorithm was implemented in the APL language using APL+Win 3.6. To
compare the performance of the surrogate dual bound with that of the Lagrangian dual
bound, one hundred problems with 50 constraints and 100 structural variables were
randomly generated with the same characteristics as Example 1. For each of the one
hundred problems the surrogate dual provided the tighter lower bound. The smallest gap
between the surrogate dual bound and the Lagrangian dual bound (as a percentage of the
surrogate dual bound) is 0.37%, the mean is 21.89%, and the largest gap is 50%.
(Professor, the referee wants to see a table which shows the comparison of computational
times needed for finding the surrogate dual bound and Lagrangian dual bound. However,
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your current APL program provides only the time for solving the problem. Could you
modify your program code so that it does provide the comparison of computational time?
)
To test the performance of the implemented branch-and-bound algorithm for problems
with a variety of characteristics, smaller test problems were randomly generated. Five
levels were used for constraint coefficient density, and two levels each for fixed costs,
cost coefficients, and cost exponents, providing forty different combinations.
Specifically, these problems possessed the following characteristics:

e #constraints: 5

e #variables: 20

e #basic solutions: 53130

e Constraint coefficients: integers uniform in [-5, 10]

with density 6 = 1%, 25%, 50%, 75%, or 100%

e Fixed costs: integers uniform in either [0, 5] or [5, 10]

e Cost coefficient « uniform in either [0, 5] or [1, 10]

e Cost exponent £ uniform in either [0.1, 0.5] or [0.5, 1]

One hundred problems were generated from each of the forty different combinations.
Computational results are recorded in Tables 5 and 6. The first column of these tables
represents problem generation parameters, i.e., it consists of three alphabetic letters ( L or
H indicating the lower or higher interval, respectively, for fixed costs, cost coefficients
a , and cost exponents £) and one numerical number (1, 25, 50, 75, or 100, representing
the density 6. (For example, problems in the set LHH5 have fixed costs, cost

coefficients, and cost exponents sampled from the intervals [0,5], [1, 10], and [0.5, 1],
respectively, and 5% density.) The other statistics in these tables are defined as follows:

NN = number of nodes evaluated

NN% = ratio of NN to total number of basic solutions

NS = number of nodes fathomed by surrogate bound

NS% = fraction of nodes which were fathomed by surrogate dual bound

NF = number of nodes fathomed because sum of fixed cost exceeds incumbent
NF% = fraction of nodes which were fathomed because of excessive fixed costs
NI = number of nodes fathomed because of infeasible LP

NI% = fraction of nodes which were fathomed by infeasible LP

NJ = number of basic structural variables in optimal solution

F% = optimal fixed costs as fraction of total costs

%GAP = surrogate duality gap as percent of optimal cost

Statistical analysis based on both Tables 5 and 6 has been performed to identify the
parameter(s) that causes the change in the surrogate duality gap.
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Insert Figure 2 about here

Effect of magnitude of fixed costs: In this research we have used two intervals in testing
for the effect of fixed costs: uniform in either [0, 5] or [5, 10]. The Tukey’s studentized
range (HSD) means comparison test (Tukey [26]) has been performed to check if the
average solution gap is same with two intervals tested. It is observed that the average
surrogate duality gap between two intervals tested is not significantly different. Thus, the
result suggests that the variation of surrogate duality gap does not depend on the value of
the fixed cost in the interval tested. The box-and-whisker plot displayed in Figure 2a
provides a graphical view of this result.

Effect of magnitude of cost coefficient («): Two intervals were used in testing for the
effect of the cost coefficient: uniform in either [0, 5] or [1, 10]. The Tukey’s studentized
range (HSD) means comparison test has been performed to check if the average solution
gap is same across the two intervals tested. The analysis shows that the low value of cost
coefficient is associated with the variation of the surrogate duality gap that is
significantly different from the high value of cost coefficient. Furthermore, we note that
problems with smaller cost coefficients have smaller surrogate duality gaps. The box-
and-whisker plot also indicates that the surrogate duality gap may be more variable with
low values of cost coefficients than with high values (See Figure 2b).

Effect of magnitude of cost exponent (£): Two intervals were used in testing for the
effect of the cost exponent: uniform in either [0.1, 0.5] or [0.5, 1]. The Tukey’s
studentized range (HSD) means comparison test has been performed to check if the
average solution gap is same with two intervals tested. We indicate that there is a
significant difference in the surrogate duality gap across the value of f: the result
suggests that the surrogate duality gap is larger for problems with higher value of cost
exponent (See Figure 2c).

Effect of problem density: In this research we have used five categories for problem
density: 1%, 25%, 50%, 75%, or 100%. The Tukey’s studentized range (HSD) means
comparison test has been performed to check whether the average solution gap is the
same with five different density values. Test results shows that problem densities of both
1% and 100% are associated with a surrogate duality gap that is significantly different
from the other three density types: changing density between 1% and 100% has no
significant influence on the variation of the surrogate duality gap and so we have
combined these two groups. On the other hand, we note that changing density among
these four new groups (1 & 100%, 25%, 50%, and 75%) has a significant influence in
accounting for the variation in the surrogate duality gap. We observe that problems with
either 1% or 100% density are relatively easier to solve than those with other densities,
and problems with 50% density are the most difficult (See Figure 2d).

8. Conclusion

We have presented a surrogate dual for the linearly-constrained capacity planning
problem with (separable) fixed charges and continuous economies of scale of the form
(4). This problem subsumes the linear fixed-charge problem (£ =1) and the pure fixed
charge problem (5 =0).

Duality theory assures us that the surrogate duality gap is no larger than the Lagrangian
duality gap, although the surrogate dual is generally more difficult to solve. We have
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shown, however, that the ability of the surrogate dual to fathom subproblems in a branch-
and-bound algorithm may be determined without directly solving the surrogate dual
itself, but that a simple test of the feasibility of a certain linear system of inequalities will
suffice.

To compare the performance of the surrogate dual bound with the one of the Lagrangian
dual bound, one hundred randomly generated problems with 50 constraints and 100
structural variables were tested. In this experiment, the tighter bound was obtained with the
surrogate dual for every test problem.

In order to characterize problems of this class having relatively small surrogate duality
gaps, a statistical analysis of the surrogate duality gap of four thousand randomly
generated problems with various problem parameters (density of linear constraints, fixed
costs ¢, cost coefficients «, and exponents f) was performed. This analysis suggests that
these gaps are smaller for problems with either very high or very low density, and for
problems with small values of « or g.
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Figure 1. Linear approximations of objective function
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Table 1. Characteristics of example

] 1 2 3

& 1.1 2.1 1.5
o 1.4 1.5 1.25
B 0.6 0.8 0.7
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Table 2. Cost parameters for 5x20 example problem.

0NN N AWK =

NS I e e e e N e e
S OO0 3N LN B W —= OO

o [

AR PR PR W R OUGOUEOGVELWE OOVGW OB B BB OGW

a[i]
1.98
1.87
1.65
0.52
0.18
0.10
0.53
1.93
0.16
0.42
0.27
0.43
1.49
1.04
0.13
0.67
0.92
0.46
0.66
1.22

Al
0.55
0.69
0.64
0.86
0.78
0.74
0.80
0.67
0.92
0.70
0.64
0.59
0.83
0.56
0.93
0.79
0.97
0.94
0.85
0.58
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Table 3. Constraint parameters for 5x20 example problem.

b
40

12 34 56789 1011 12 13 14 15 16 17 18 19 20
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Table 4. Optimal solution of the 5x20 example problem

Optimal cost: 11.7977618611

i X[l Cost F%
5 11.666667 5.2231818 44 .27
10 13.333333  6.5745801 55.72

Surplus in Constraints (Ax-b)

wn

i
666667

GNP -
U o

OO
OO O
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Table 5. Mean values

22

NN NN% NS NS% NF NF% NI NI% NJ F% GAP
LLL1 696.7 1.31 56.95 25.40 28.30 1250 23.38 2.60 1.41 51.96 15.99
LLL25 7333.0 13.80 319.50 10.89 247.00 3.31 197.50 2.51 1.96 56.38 33.57
LLLSO 6970.0 13.12 343.10 11.62 281.40 3.62 222.60 3.05 1.98 52.81 34.05
LLL75 1615.0 3.04 131.40 19.34 86.53 852 79.77 3.47 1.70 53.06 22.32
LLL100 365.0 0.69 ©53.86 26.24 29.40 15.17 25.99 242 1.36 57.02 13.57
HLL1 421.7 0.79 27.66 1490 97.22 27.31 13.81 2.27 1.08 75.31 10.52
HLL25 3031.0 5.71 133.20 8.14 317.00 12.94 59.14 2.29 1.59 71.30 33.98
HLL50 3113.0 5.86 136.10 6.44 440.40 16.25 95.29 3.08 1.87 76.44 39.93
HLL75 964.6 1.82 63.15 11.28 184.20 23.37 38.01 3.46 1.49 73.91 26.64
HLL100 3289 0.62 3219 1453 092.34 28.41 11.81 2.46 1.10 74.10 12.86
LHL1 596.2 1.12 61.59 29.75 16.07 9.78 27.27 2.42 1.57 51.19 27.92
LHL25 12720.0 23.93 472.70 11.10 57.59 1.81 376.90 2.21 1.98 41.10 37.76
LHLS0 12120.0 22.81 460.30 13.61 60.71 1.85 497.40 3.17 2.19 45.94 43.26
LHL75 3425.0 6.45 295.30 22.10 47.95 4.85 236.70 4.28 1.95 48.58 39.02
LHL100 7717 145 94.18 32.21 20.54 7.48 60.62 2.57 1.58 48.98 27.16
HHL1 6449 1.21 4257 2457 43.05 16.97 14.74 2.14 1.28 70.09 20.13
HHL25 6156.0 11.59 405.70 10.77 252.20 5.18 129.00 2.10 1.76 61.60 39.31
HHL50 4016.0 7.56 253.70 13.46 228.30 7.33 95.44 2.71 1.80 64.45 40.50
HHL75 867.6 1.63 89.31 21.67 113.40 11.78 38.33 3.25 1.58 68.33 32.86
HHL100 2309 043 37.37 27.39 34.23 1561 8.57 2.29 1.18 66.10 20.05
LLH1 3651.0 6.87 284.80 29.02 2145 5.72 279.10 3.08 1.88 44.86 29.46
LLH25 15470.0 29.12 379.90 13.24 46.19 1.20 458.00 2.14 2.25 36.68 33.13
LLHS0 16680.0 31.39 436.60 13.60 22.04 0.97 606.40 2.86 2.42 42.06 38.35
LLH75 6771.0 12.74 248.90 26.19 236 2.79 440.20 3.13 2.05 41.41 32.95
LLH100 1955.0 3.68 159.60 32.47 7.92 10.09 169.80 2.43 1.84 49.01 27.29
HLH1 1908.0 3.59 140.00 23.34 126.30 12.48 104.60 3.32 1.51 59.22 26.53
HLH25 6514.0 12.26 382.90 11.20 99.25 3.40 172.90 2.20 1.93 57.25 39.35
HLH50 7347.0 13.83 510.10 15.41 188.70 2.98 269.40 3.03 2.08 57.69 42.96
HLH75 1105.0 2.08 156.60 24.37 55.64 7.04 66.28 3.49 1.77 60.42 34.37
HLH100 310.1 0.58 48.22 30.67 27.46 13.31 16.58 2.28 1.54 65.27 26.97
LHH1 5934.0 11.17 241.10 32.71 152 5.54 425.80 2.06 1.81 33.93 26.32
LHH25 23850.0 44.90 441.40 10.39 0.12 0.24 787.60 2.27 2.60 29.56 36.32
LHH50 21490.0 40.44 366.60 14.69 0.15 0.40 928.00 2.50 2.48 27.66 34.59
LHH75 14720.0 27.71 274.90 23.92 236 1.74 886.10 3.04 2.24 33.63 33.07
LHH100 8929.0 16.81 150.80 34.68 0.55 5.44 675.90 2.48 1.92 33.27 28.28
HHH1 3343.0 6.29 214.70 30.99 24.78 6.70 240.90 2.98 1.69 48.31 28.01
HHH25 | 13640.0 25.68 536.90 12.40 74.44 1.67 459.20 2.14 2.16 45.18 37.65
HHH50 | 10960.0 20.63 513.30 16.32 111.40 1.33 435.70 2.93 2.27 49.51 39.31
HHH75 3970.0 7.47 286.60 24.60 31.76 4.17 240.20 3.41 1.96 49.56 35.92
HHH100 | 1884.0 3.55 167.90 32.96 15.40 8.66 159.90 2.49 1.66 52.12 28.43




Table 6. Median values

NN NN% NS NS% NF NF% NI NI% NJ F% GAP
LLLL 113 0.21 28 2242 3 732 2 127 1 48.26 12.38
LLL25 2461 4.63 180 8.85 4 0.74 52 249 2 57.02 38.20
LLLSO 2313 435 211 8.50 6 0.89 81 270 2 50.08 39.60
LLL75 417 0.78 55 17.88 4 435 11 299 2 49.77 28.66
LLL100 85 0.16 29 22.68 3 1143 1 130 1 57.04 6.11
HLL1 205 0.39 19 10.89 656 2958 5 221 1 7469 3.85
HLL25 1639 3.09 87 540 230 12.66 34 2.02 2 71.43 39.11
HLL50 2271 427 80 4.01 319 17.31 76 3.03 2 77.06 43.65
HLL75 507 095 50 8.33 119 2391 16 3.16 1 74.26 31.85
HLL100 261 049 19 1111 63 3168 6 256 1 77.54 571
LHL1 55 0.10 19 30.50 2 465 0 0.00 2 51.62 2931
LHL25 4261 8.02 192 7.07 1 001 32 210 2 38.11 42.10
LHLS0 1911 3.60 179 11.67 1 0.00 46 3.20 2 43.60 45.57
LHL75 533 1.00 94 20.83 1 027 18 4.78 2 49.81 42.97
LHL100 47 0.09 18 30.47 1 142 0 0.00 2 47.75 30.03
HHL1 89 0.17 24 22.22 4 1623 2 177 1 72.83 13.72
HHL25 | 3521 6.63 170 7.83 24 131 45 1.67 2 57.95 45.24
HHL50 | 1479 2.78 132 11.84 10 243 36 2.70 2 64.33 44.16
HHL75 377 071 62 22.22 5 491 10 3.05 2 71.11 39.27
HHL100 | 101 0.19 27 28.21 4 1391 2 222 1 65.77 17.79
LLH1 85 0.16 29 27.71 0 000 1 141 2 4573 2931
LLH25 2177 4.10 102 6.42 0O 0.00 36 2.02 2 35.72 33.48
LLHS0 3533 6.65 158 6.21 0 0.00 70 2.87 2 40.81 38.07
LLH75 219 041 39 2257 0 000 7 175 2 38.17 3321
LLH100 11 0.02 5 33.33 1 186 0 0.00 2 4853 28.32
HLH1 247 046 34 2222 3 588 7 256 1 58.20 31.91
HLH25 | 2771 5.22 157 8.28 1 007 30 1.96 2 53.30 40.83
HLH50 | 3117 5.87 246 13.76 1 0.05 57 3.05 2 55.68 42.90
HLH75 313 059 37 22.22 2 201 6 3.10 2 58.44 37.94
HLH100 59 0.11 19 33.33 2 645 1 170 2 67.43 32.99
LHH1 9 0.02 5 33.33 0 000 0 000 2 3277 27.22
LHH25 | 6183 11.64 64 4.48 0O 0.00 86 2.16 3 27.29 33.92
LHH50 | 3367 6.34 43 5.86 0 0.00 53 243 2 25.59 33.52
LHH75 223 042 6 17.04 0 000 6 133 2 2953 31.64
LHH100 9 0.02 5 44.44 0 000 O 000 2 28.95 28.35
HHH1 71 0.13 22 33.33 0O 000 1 140 2 4554 31.67
HHH25 | 1941 3.65 113 7.51 0 0.00 32 208 2 43.05 37.71
HHHS0 | 1313 2.47 142 12.74 0 0.00 20 2.70 2 46.81 40.32
HHH75 471 0.89 55 22.37 0 0.00 11 2.88 2 48.92 36.83
HHH100 45 0.08 14 33.33 1 202 0 000 2 47.93 32.21
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