56:171
Operations Research
Fall 2001

Quiz Solutions

[^0]| 56:171 Operations Research |
| :---: |
| Quiz \#1 Solution -- Fall 2001 |

For each statement, indicate " + "=true or " o " $=$ false.
\qquad
O

1. When you enter an LP formulation into LINDO, you must first convert all inequalities to equations.
__ \pm 2. When you enter an LP formulation into LINDO, you do not need to enter any nonnegativity constraints, for example, X1 >=0.
\qquad 3. When you enter an LP formulation into LINDO, you must manipulate your constraints so that all variables appear on the left, and all constants on the right.
___ 4. LINDO would interpret the constraint "X1 + $2 \mathrm{X} 2>10$ " as " $\mathrm{X} 1+2 \mathrm{X} 2 \geq 10$ ".
```
<><><>><><>><><><<><><><<>
```

Cattle feed can be mixed from oats, corn, alfalfa, and peanut hulls. The following table shows the current cost per ton (in dollars) of each of these ingredients, together with the percentage of recommended daily allowances for protein, fat, and fiber that a serving of it fulfills.

	Oats	Corn	Alfalfa	Peanut hulls
\% protein	60	80	55	40
\% fat	50	70	40	100
\% fiber	90	30	60	80
Cost \$/ton	200	150	100	75

We want to find a minimum cost way to produce feed that satisfies at least 60% of the daily allowance for protein and fiber while not exceeding 60% of the fat allowance.
Define the variables OATS, CORN, ALFALFA, and HULLS to be the quantity (in tons) mixed to obtain a ton of cattle feed. The model \& LINDO output are below:

END

OBJECTIVE FUNCTION VALUE		
1)	125.0000	
VARIABLE	VALUE	REDUCED COST
OATS	0.157143	0.000000
CORN	0.271429	0.000000
ALFALFA	0.400000	0.000000
HULLS	0.171429	0.000000
		DUAL PRICES
ROW	SLACK OR SURPLUS	-500.000000
2)	0.000000	-250.000000
$3)$	0.000000	0.000000
$4)$	0.000000	325.000000

5. The optimal composition of cattle feed is $\quad 40 _\%$ alfalfa.
6. The minimum cost of a ton of feed is $\$ _125$
\qquad .
7. There are __ _ basic variables in the optimal solution, in addition to -Z (in the cost equation).

Consider the following LP:

8. The feasible region is bounded by _4_ points, namely $\quad \mathrm{B}, \mathrm{C}, \mathrm{H}, \& \mathrm{~J}$
9. At point \mathbf{H}, the slack variable for constraint \# _2_ is positive. $\left(X_{I}+\overline{X_{2}}=4.88<6\right)$

Let X_{3}, X_{4}, and X_{5} represent the slack (or surplus) in constraints 1,2 , and 3, respectively.
10. The objective coefficients of X_{3}, X_{4}, and X_{5} in the initial simplex tableau are zero.
11. The optimal solution is at point \qquad _ where the basic variables are $\underline{X}_{\underline{1}}, \mathrm{X}_{\underline{3}}, \& \mathrm{X}_{5}$ (plus -Z).

Note: For your convenience, the $\left(X_{1}, X_{2}\right)$ coordinates of the points labeled above are:

Point	A	B	C	D	E	F	G	H	I	J
X_{1}	0	3	6	9	0	0	0	2.06	1.5	4.67
X_{2}	0	0	0	0	4	6	7	2.82	4.5	1.33

The values of the variables X_{3}, X_{4}, and X_{5}, and the cost, are:

Point	A	B	C	D	E	F	G	H		J
X1	0.00	3.00	6.00	7.00	0.00	0.00	0.00	2.06	1.50	4.67
X2	0.00	0.00	0.00	0.00	4.00	6.00	9.00	2.82	4.50	1.33
X3	28.00	16.00	4.00	0.00	0.00	-14.00	-35.00	0.00	-9.50	0.00
X4	6.00	3.00	0.00	-1.00	2.00	0.00	-3.00	1.12	3.00	0.00
X5	-9.00	0.00	9.00	12.00	-5.00	-3.00	0.00	0.00	0.00	6.33
Objective	0.00	9.00	18.00	21.00	8.00	12.00	18.00	11.82	13.50	16.67
Feasible?		YES	YES					YES		YES

56:171 Operations Research
Quiz \#2 Solutions, Fall 2001

Below are several simplex tableaus. Assume that the objective in each case is to be minimized. Classify each tableau by writing to the right of the tableau a letter \mathbf{A} through \mathbf{G}, according to the descriptions below. Also answer the question accompanying each classification, if any.
(A) Nonoptimal, nondegenerate tableau with bounded solution. Circle a pivot element which would improve the objective.
(B) Nonoptimal, degenerate tableau with bounded solution. Circle an appropriate pivot element.
(C) Unique optimal basic solution.
(D) Optimal tableau, with alternate optimal basic solution. Circle a pivot element which would lead to another optimal basic solution.
(E) Objective unbounded (below). Circle a variable which, when going to infinity, will make the objective arbitrarily low.
(F) Tableau with infeasible basic solution

Warning: Some of these classifications might be used for more than one tableau, while others might not be used at all

True (+) or False (o)?

\qquad 6. The "minimum ratio test" is used to select the pivot row in the simplex method for linear programming.
\qquad 7. Every feasible solution of an LP is a basic solution.
\qquad 8. If, when solving an LP by the simplex method, you make a mistake in choosing a pivot row, the resulting tableau is infeasible.
\qquad 9. In the simplex method, every variable of the LP is either basic or nonbasic.
\qquad 10. When you enter an LP formulation into LINDO, you must first convert all inequalities to equations.
\qquad 11. The restriction that X 1 be nonnegative should be entered into LINDO as the constraint $\mathrm{X} 1>=0$.
\qquad 12. A "pivot" in a nonbasic column of a tableau will make it a basic column.
\qquad

Consider the following LP problem:

$$
\begin{array}{cc}
\text { Min } w=4 Y_{1}+2 Y_{2}-Y_{3} \\
\text { s.t. } & Y_{1}+2 Y_{2} \quad \leq 6 \\
& Y_{1}-Y_{2}+2 Y_{3}=8 \\
& Y_{2} \geq 0, Y_{3} \geq 0 \quad\left(Y_{1} \text { unrestricted in sign }\right)
\end{array}
$$

a 1. The dual objective function is to be
(a) maximized
(b) minimized
b 2. The number of dual variables is
(a) one
(b) two
(c) three
(d) four
\qquad 3. The number of dual constraints (excluding sign restrictions such as nonnegativity) is
(a) one
(b) two
(c) three
(d) four
a 4. The first dual constraint is
(a) equation
(b) less-than-or-equal
(c) greater-than-or-equal
b 5. The right-hand-side of the first constraint is
(a) 2
(b) 4
(c) 6
(d) 8
(e) other
\qquad 6. The sign restriction of the first dual variable is
(a) nonnegativity
(b) nonpositivity
(c) no sign restriction
\qquad 7. The objective coefficient of the first dual variable is
(a) 2
(b) 4
(c) 6
(d) 8
(e) other

For each statement, indicate " + "=true or " o "=false.
\qquad 8. If you increase the right-hand-side of a " \leq " constraint in a maximization LP, the optimal objective value will either increase or stay the same.
\qquad 9. The dual variable corresponding to a " \leq " constraint in a maximization LP must be nonpositive. It must be nonnegative!
\pm 10. The "reduced cost" in an LP solution provides an estimate of the change (either increase or decrease) in the objective value when a nonbasic variable increases.
$+\quad 11$. At the completion of the revised simplex method applied to an LP, the simplex multipliers give the optimal solution to the dual of the LP.
\qquad
\qquad 12. If the increase in the right-hand-side of a "tight" constraint remains less than the "ALLOWABLE INCREASE" reported by LINDO, then the optimal values of all variables will be unchanged. The basis is unchanged, but the values of the basic variables are given by $x_{B}=\left(A^{B}\right)^{-1} b$, so if the right-hand-side b changes, the values x_{B} do also.
\qquad 13. The "minimum ratio test" is used to select the pivot row in the simplex method for linear programming..
\qquad 14. The "Complementary Slackness" theorem says that if, for example, constraint \#1 of the primal problem is "slack", then constraint \#1 of the dual problem is "tight". The theorem says instead that the first dual variable must be zero.
\pm 15. If the increase in the cost of a nonbasic variable remains less than the "ALLOWABLE INCREASE" reported by LINDO, then the optimal values of all variables will be unchanged.

56:171 Operations Research Quiz \#4 Solutions -- Fall 2001

Consider again the LP model of PAR, Inc., which manufactures standard and deluxe golf bags:
X1 = number of STANDARD golf bags manufactured per quarter
X2 $=$ number of DELUXE golf bags manufactured per quarter
Four operations are required, with the time per golf bag as follows:

	STANDARD	DELUXE	Available
Cut-\&-Dye	0.7 hr	1 hr	$630 \mathrm{hrs}$.
Sew	0.5 hr	0.8666 hr	$600 \mathrm{hrs}$.
Finish	1 hr	0.6666 hr	708 hrs.
Inspect-\&-Pack	0.1 hr	0.25 hr	135 hrs.
Profit (\$/bag)	\$10	\$9	

LINDO provides the following output:
MAX $\quad 10 \mathrm{X1}+9 \mathrm{X} 2$
SUBJECT TO
2) $0.7 \mathrm{X1}+\mathrm{X} 2<=630$
3) $0.5 \mathrm{X1}+0.86666 \mathrm{X} 2<=600$
4) $\mathrm{X} 1+0.66666 \mathrm{X} 2<=708$
5) $0.1 \mathrm{X1}+0.25 \mathrm{X} 2<=135$

END
OBJECTIVE FUNCTION VALUE

1) 7668.01200

VARIABLE	VALUE	REDUCED COST
X1	540.003110	.000000
X2	251.997800	.000000
ROW	SLACK OR SURPLUS	DUAL PRICES
2)	.000000	4.375086
3)	111.602000	.000000
$4)$.000000	6.937440
5)	18.000232	.000000

RANGES IN WHICH THE BASIS IS UNCHANGED:
OBJ COEFFICIENT RANGES

VARIABLE	CURRENT
	COEF
X1	10.000000
X2	9.000000

ALLOWABLE	ALLOWABLE
INCREASE	DECREASE
3.500135	3.700000
5.285715	2.333400

RIGHTHAND SIDE RANGES

ROW	CURRENT	ALLOWABLE	ALLOWABLE
	RHS	INCREASE	DECREASE
2	630.000000	52.364582	134.400000
3	600.000000	INFINITY	111.602000
4	708.000000	192.000010	128.002800
5	135.000000	INFINITY	18.000232

THE TABLEAU

ROW	(BASIS)	X1	X2	SLK 2	SLK 3	SLK 4	K 5	
1	ART	. 00	. 00	4.375	. 00	6.937	. 00	7668.012
2	X2	. 00	1.00	1.875	. 00	-1.312	. 00	251.998
3	SLK 3	. 00	. 00	-1.000	1.00	. 200	. 00	111.602
4	X1	1.00	. 00	-1.250	. 00	1.875	. 00	540.003
5	SLK 5	00	00	-. 344	00	141	1.00	18.000

Enter the correct answer into each blank or check the correct alternative answer, as appropriate. If not

 sufficient information, write "NSI" in the blank:1. If the profit on STANDARD bags were to decrease from $\$ 10$ each to $\$ 6$ each, the number of STANDARD bags to be produced would
$\left.\right|_{\ldots} \mid$ increase $|\underline{\mathbf{X}}|$ decrease $|\ldots|$ remain the same $|\ldots|$ not sufficient info.
2. If the profit on DELUXE bags were to increase from $\$ 9$ each to $\$ 13$ each, the number of DELUXE bags to be produced would
$\mid \ldots$ increase $|\ldots|$ decrease $|\underline{X}|$ remain the same $|\ldots|$ not sufficient info.
3. The LP problem above has $|\underline{\mathbf{X}}|$ exactly one optimal solution |__| exactly two optimal solutions
|__| an infinite number of optimal solutions
4. If an additional 10 hours were available in the sewing department, PAR would be able to obtain an additional \$_0 \qquad in profits.
5. If an additional 10 hours were available in finishing department, PAR would be able to obtain an additional \$_69.37 in profits.
6. If the variable "SLK 2" were increased, this would be equivalent to increasing the hours used in the cut-\&-dye department
_ X decreasing the hours used in the cut-\&-dye department none of the above
7. If the variable "SLK 2" were increased by 10 , X1 would $|\underline{\mathbf{X}}|$ increase $|\ldots|$ decrease by $12.5 \quad$ STANDARD golf bags/quarter.
8. If the variable "SLK 2" were increased by 10, X2 would \qquad | increase $|\underline{\mathbf{X}}|$ decrease by $\underline{18.75 \quad \text { DELUXE }}$ golf bags/quarter.

FYI:

Maximize	Minimize
Type of constraint i:	Sign of variable i:
\leq	nonnegative
$=$	unrestricted in sign
\geq	nonpositive
Sign of variable j:	Type of constraint i:
nonnegative	\geq
unrestricted in sign	$=$
nonpositive	\leq

Data Envelopment Analysis (Note: $D M U=$ "decision-making-unit")
c 9. In the maximization problem of the primal-dual pair of LP models, the decision variables are:
a. The amount of each input and output to be used by the DMU
b. The multipliers for the DMUs which are used to form a linear combination of DMUs in the reference set.
c. The "prices" assigned to the inputs and outputs.
c. None of the above
_a 10. The "prices" or weights assigned to the input \& output variables in the maximization problem must
a. be nonnegative
b. sum to 1.0
c. Both a \& b
d. Neither a nor b.

True (+) or false (o)?
_ 11. To perform a complete DEA analysis, an LP must be solved for every DMU.
o 12. In the maximization LP form of the problem, there is a constraint for each input and for each output..
13. The optimal value of the LP cannot exceed 1.0 .
14. The number of input and output variables must be equal
_o _ 15. The purpose of the DEA technique is to assist firms in setting market prices for their products.

56:171 Operations Research Quiz \#5 Solutions -- Fall 2001

A company has two plants and three warehouses. The supplies \& demands \& shipping costs (\$/unit) for a particular product is shown in the table:

	Warehouse 1	Warehouse 2	Warehouse 3	Supply
Plant 1	8	9	12	500
Plant 2	9	10	11	200
Demand	150	450	100	

True (+) or false (o)?
\pm 1. For this problem, the optimal solution found by the simplex method is guaranteed to be integer-valued.
o 2. A dummy plant must be defined so that \# sources = \# destinations.
3. This is a "balanced" transportation problem.
4. The "northwest corner method" is a special-purpose algorithm which gives the same result as the simplex algorithm.
5. Every basic feasible solution of this problem is degenerate.
_土 6. If Plant 2 had 300 units of supply, rather than 200 units, the problem becomes "unbalanced".
o 7. A transportation problem is a special case of an assignment problem.
8. The "Hungarian" algorithm can be used to provide an initial basic feasible solution for the transportation problem above.
_ 9. Every basic feasible solution of an assignment problem is degenerate.
_o_10. When the transportation simplex algorithm encounters a degenerate solution, the next iteration will not improve the objective function.
_ 11 . If 5 machines are to be assigned to 5 jobs, the assignment problem will have 25 variables and 10 linear equations.
± 12. If no degenerate solution is encountered, the transportation simplex method gives an improvement in the objective function at every basis change.
_o_13. The simplex method applied to the assignment problem might yield non-integer (fractional) solutions.
_o_14. If a zero appears in row 1 , column 1 of the cost matrix during row and column reduction in the Hungarian method, then a zero will occupy row 1 , column 1 throughout the remaining iterations.
± 15. If the dual variables of the above transportation problem are (for the sources) $U=[0,1]$ and (for the destinations) $\mathrm{V}=[8,9,10]$, then the reduced costs of all the variables are nonnegative.
_o_16. The above transportation problem has five basic variables. Note: the number of basic variables will be $\mathrm{m}+\mathrm{n}-1=2+3-1=4$.

The statements below refer to the cost matrix:

Machine \job	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$
$\mathbf{1}$	0	1	0	$\mathbf{1}$	0
$\mathbf{2}$	2	3	1	0	2
$\mathbf{3}$	3		4	6	1
$\mathbf{4}$	5	2	1	0	2
$\mathbf{5}$	4	$\mathbb{1}$	5	1	3

± 17. This cost matrix could possibly result from the row and column reduction steps of the Hungarian method applied to some assignment cost matrix.

+ 18. After the next step of the Hungarian method, all of the elements occupied by zeroes in the above matrix will again be occupied by zeroes. Note: Three lines are required to cover the zeroes, which intersect only on nonzero costs; therefore, in this situation, only nonzero costs will be increased by the next cost reduction.
_o_19. After the next step of the Hungarian method, exactly one element which is currently nonzero will be occupied by a zero. Note: The costs without lines will be reduced by the value 1 , and therefore three new zeroes will appear.
_o_20. The Hungarian method assumes that all costs are integers.

56:171 Operations Research Quiz \#6 Solutions -- Fall 2001

1. Integer LP Model A court decision has stated that the enrollment of each high school in Metropolis be at least 20% black. The numbers of black and white high school students in each of the city's five school districts, and the distance (in miles) that a student in each district must travel to each high school are:

District	Whites	Blacks
1	80	30
2	70	5
3	90	10
4	50	40
5	60	30

District	HS\#1	HS\#2
1	1.0	2.0
2	0.5	1.7
3	0.8	0.8
4	1.3	0.4
5	1.5	0.6

School board policy requires that all students in a given district must attend the same school, and that each school must have an enrollment of at least 150 students. We wish to determine how to minimize the total distance that students must travel to high school. Define the binary decision variables
$\mathrm{Xij}=1$ if students in district i are assigned to HS\#j, 0 otherwise
Put an " X " beside each of the constraints below which would be valid in the integer LP model.

$$
\begin{array}{ll}
\underline{\mathrm{X}} X_{11}+X_{12}=1 & \text { X } 110 X_{11}+75 X_{21}+100 X_{31}+90 X_{41}+90 X_{51} \geq 150 \\
X_{11}+X_{21}+X_{31}+X_{41}+X_{51}=1 & -30 X_{11}+5 X_{21}+10 X_{31}+40 X_{41}+30 X_{51} \leq 150 \\
-X_{11}+X_{21}+X_{31}+X_{41}+X_{51}=2 & -30 X_{11}+5 X_{21}+10 X_{31}+40 X_{41}+30 X_{51} \geq 30 \\
\sum_{x=1}^{5} \sum_{j=1}^{2} X_{i j}=2 & -X_{11}+X_{21}+X_{31}+X_{41}+X_{51} \geq 150 \\
-\sum_{x=1}^{5} \sum_{j=1}^{2} X_{i j}=150 & -30 X_{11}+5 X_{21}+10 X_{31}+40 X_{41}+30 X_{51} \geq 150 \\
\underline{\mathrm{X}} 30 X_{12}+5 X_{22}+10 X_{32}+40 X_{42}+30 X_{52} \geq 0.2\left(110 X_{12}+75 X_{22}+100 X_{32}+90 X_{42}+90 X_{52}\right) \\
-30 X_{12}+5 X_{22}+10 X_{32}+40 X_{42}+30 X_{52} \geq 0.2\left(80 X_{12}+70 X_{22}+90 X_{32}+50 X_{42}+60 X_{52}\right)
\end{array}
$$

2. Four trucks are available to deliver milk to five grocery stores. Capacities and daily operating costs vary among the trucks. Trucks are to make a single trip per day. Each grocery may be supplied by only one truck, but a truck may deliver to more than one grocery in one trip. No more than $\$ 100$ may be spent on the trucks.

Truck $\#$	Capacity (gallons)	Daily operating cost $(\$)$
1	400	45
2	500	50
3	600	55
4	900	60

Grocery $\#$	Daily demand (gallons)
1	100
2	200
3	300
4	500
5	800

Define binary variables
$\mathrm{Y}_{\mathrm{i}}=1$ if truck i is used, 0 otherwise
$\mathrm{X}_{\mathrm{ij}}=1$ if truck i delivers to grocery $\mathrm{j}, 0$ otherwise

Put an " X " beside each of the constraints below which would be valid in the integer LP model.

$\mathrm{X}_{41}+\mathrm{X}_{42}+\mathrm{X}_{43}+\mathrm{X}_{44}+\mathrm{X}_{45}=1$	$\stackrel{*}{*} \mathrm{X}_{31}+\mathrm{X}_{32}+\mathrm{X}_{33}+\mathrm{X}_{34}+\mathrm{X}_{35} \leq 600 \mathrm{Y}_{3}$
$\underline{\mathrm{X}} \mathrm{X}_{13}+\mathrm{X}_{23}+\mathrm{X}_{33}+\mathrm{X}_{43}=1$	$400 \mathrm{X}_{14}+500 \mathrm{X}_{24}+600 \mathrm{X}_{34}+900 \mathrm{X}_{44} \geq 500 \mathrm{Y}_{4}$
$\mathrm{X}_{41}+\mathrm{X}_{42}+\mathrm{X}_{43}+\mathrm{X}_{44}+\mathrm{X}_{45} \leq \mathrm{Y}_{4}$	$\underline{\mathrm{X}} \mathrm{X}_{41}+\mathrm{X}_{42}+\mathrm{X}_{43}+\mathrm{X}_{44}+\mathrm{X}_{45} \leq 5 \mathrm{Y}_{4}$
X $\mathrm{X}_{43} \leq \mathrm{Y}_{4}$	$\mathrm{X}_{41}+\mathrm{X}_{42}+\mathrm{X}_{43}+\mathrm{X}_{44}+\mathrm{X}_{45} \leq 1100$
$\mathrm{Y}_{4} \leq \mathrm{X}_{43}$	$-\mathrm{X}_{13}+\mathrm{X}_{23}+\mathrm{X}_{33}+\mathrm{X}_{43} \leq 300 \mathrm{Y}_{3}$
${ }^{300} \mathrm{X}_{43} \geq 900 \mathrm{Y}_{4}$	$\mathrm{X}_{13}+\mathrm{X}_{23}+\mathrm{X}_{33}+\mathrm{X}_{43} \leq 4 \mathrm{Y}_{3}$
$\stackrel{*}{*} 300 \mathrm{X}_{43} \leq 900 \mathrm{Y}_{4}$	$\underline{\mathrm{X}} 100 \mathrm{X}_{41}+200 \mathrm{X}_{42}+300 \mathrm{X}_{43}+500 \mathrm{X}_{44}+800 \mathrm{X}_{45} \leq 900 \mathrm{Y}_{4}$
X $45 \mathrm{Y}_{1}+50 \mathrm{Y}_{2}+55 \mathrm{Y}_{3}+60 \mathrm{Y}_{4} \leq 100$	$45 \mathrm{Y}_{1}+50 \mathrm{Y}_{2}+55 \mathrm{Y}_{3}+60 \mathrm{Y}_{4}=100$
*: these constraints will be valid, but a	iven the other constraints

56:171 Operations Research Quiz \#7 Solution -- Fall 2001

(\mathbf{s}, \mathbf{S}) Model of Inventory System A periodic inventory replenishment system with reorder point $\mathbf{s}=\mathbf{2}$ and order-up to level $\mathbf{S}=\mathbf{5}$ is modeled. At the end of each period of demand (day), the inventory is tallied, and if the level is less than or equal to the reorder point (s), enough is ordered (\& immediately received) so as to bring the inventory level up to S. The probability distribution is discrete and Poisson, with expected demand 2/day.

The state of the system is the stock-on-hand, i.e., $0=$ stockout, $5=$ full shelf.
The following output was obtained using the MARKOV workspace (APL code)
c_ 1. Over a long period of time, what is the percent of the days in which you would expect there to be a stockout (zero inventory)? Choose nearest value!
a. 5%
b. 10%
c. $15 \% 13.36 \%$
d. 20%
e. 25%
f. 30%
g. 35%
h. $>40 \%$
f 2. How often (i.e. once every how many days?) will the inventory be full at the end of the day? Nearest value!
a. 2 days
c. 6 days
e. 10 days
g. 14 days
b. 4 days
d. 8 days
f. 12 days 12.74 days
h. >16 days
b 3. How often will the inventory be restocked? That is, once how many days?

Note: Probability of restocking is $\quad \sum_{j=0}^{2} \pi_{j}=0.5015=\frac{1}{1.994}$
a. 1 days
b. 2 days 1.994 days
c. 3 days
d. 4 days
e. 5 days
f. 6 days
g. 7 days
h. >8 days
c_ 4. If the shelf is full Monday morning, what is the probability that a stockout occurs Friday evening?
a. 5%
b. 10%
c. $15 \% 13.35 \%$
d. 20%
e. 25%
f. 30%
g. 35%
h. $>40 \%$
b_ 5. If the shelf is full Monday morning, what is the probability that the first stockout occurs Friday evening?
a. 5%
b. $10 \% 8.469 \%$
c. 15%
d. 20%
e. 25%
f. 30%
g. 35%
h. $>40 \%$
g_6. What is the expected number of days, starting with a full inventory, until a stockout occurs?
a. 1 days
b. 2 days
c. 3 days
d. 4 days
e. 5 days
f. 6 days
g. 7 days
h. >8 days
b 7. Starting with a full inventory, what is the expected number of stockouts during the first 5 days?
a. 0.25
b. 0.50 .6011
c. 0.75
d. 1
e. 1.25
f. 1.5
g. 1.75
h. >2

True (+) or False(o)?
\pm 8. In the case of this Markov chain, the rows of the limiting matrix $\lim _{n \rightarrow \infty} P^{n}$ are identical.
\pm 9. The quantity denoted by $f_{i j}^{(n)}$ is a probability
o_10. The inequality $f_{i j}^{(n)} \geq p_{i j}^{(n)}$ is always valid. Note: $f_{i j}^{(n)} \leq p_{i j}^{(n)}$ is always true!
± 11. The quantity $p_{i j}^{(n)}$ denotes the element in row i \& column j of P^{n}
o_12. The inequality $f_{i j}^{(n)} \geq f_{i j}^{(n+1)}$ is always valid.
o_13. In a Markov chain, the state of the system has the Markov probability distribution.
o_14. For every Markov chain, a steady-state distribution exists.
± 15. The identity matrix is the transition probability matrix of some Markov chain.
o_16. If P is the transition probability matrix of a Markov chain, then the transpose of P is, also. Note: only if the column sums are each 1.0!
o_17. The steadystate probability vector π satisfies $P \pi=0$ Note: π satisfies $\pi=\pi \mathrm{P}$
o_18. The quantity denoted by $m_{i j}$ is a probability. Note: this is the expected value of the random variable $N_{i j}$.
± 19. The sum of each row of a transition probability matrix must always equal 1.0.
o_20. The quantity denoted by $N_{i j}$ is a probability. Note: this is a random variable.

Transition Probability Matrix

	0	1	2	3	4	5
0	0.05265	0.09022	0.1804	0.2707	0.2707	0.1353
1	0.05265	0.09022	0.1804	0.2707	0.2707	0.1353
2	0.05265	0.09022	0.1804	0.2707	0.2707	0.1353
3	0.3233	0.2707	0.2707	0.1353	0	0
4	0.1429	0.1804	0.2707	0.2707	0.1353	0
5	0.05265	0.09022	0.1804	0.2707	0.2707	0.1353

$2^{\text {n }}$	Power					
	0	1	2	3	4	5
0	0.1503	0.1635	0.2293	0.234	0.1608	0.06207
1	0.1503	0.1635	0.2293	0.234	0.1608	0.06207
2	0.1503	0.1635	0.2293	0.234	0.1608	0.06207
3	0.08928	0.1146	0.1927	0.2524	0.234	0.117
4	0.1381	0.1513	0.2171	0.234	0.1791	0.08039
5	0.1503	0.1635	0.2293	0.234	0.1608	0.06207

$3^{\text {rd }}$ Power						
	0	1	2	3	4	5
0	0.1305	0.147	0.2161	0.239	0.1856	0.0819
1	0.1305	0.147	0.2161	0.239	0.1856	0.0819
2	0.1305	0.147	0.2161	0.239	0.1856	0.0819
3	0.1421	0.1569	0.2243	0.2365	0.1707	0.06951
4	0.1322	0.1486	0.2177	0.239	0.1831	0.07942
5	0.1305	0.147	0.2161	0.239	0.1856	0.0819

$4^{\text {th }}$ Power						
	0	1	2	3	4	5
0	0.1341	0.1501	0.2188	0.2383	0.1809	0.07788
1	0.1341	0.1501	0.2188	0.2383	0.1809	0.07788
2	0.1341	0.1501	0.2188	0.2383	0.1809	0.07788
3	0.1321	0.1483	0.2172	0.2387	0.1836	0.08023
4	0.1339	0.1499	0.2185	0.2383	0.1812	0.07821
5	0.1341	0.1501	0.2188	0.2383	0.1809	0.07788

$5^{\text {th }}$ Power						
	1	2	3	4	5	6
0	0.1335	0.1495	0.2183	0.2384	0.1817	0.0786
1	0.1335	0.1495	0.2183	0.2384	0.1817	0.0786
2	0.1335	0.1495	0.2183	0.2384	0.1817	0.0786
3	0.1338	0.1498	0.2185	0.2384	0.1812	0.07819
4	0.1335	0.1496	0.2183	0.2384	0.1816	0.07856
5	0.1335	0.1495	0.2183	0.2384	0.1817	0.0786

Expected no. of visits during first 5 stages

	0	1	2	3	4	5
0	0.6011	0.7003	1.063	1.22	0.9796	0.4358
1	0.6011	0.7003	1.063	1.22	0.9796	0.4358
2	0.6011	0.7003	1.063	1.22	0.9796	0.4358
3	0.8206	0.8403	1.123	1.101	0.7695	0.3449
4	0.6805	0.7798	1.142	1.22	0.8604	0.3166
5	$\mathbf{0 . 6 0 1 1}$	0.7003	1.063	1.22	0.9796	0.4358

Steady State Distribution

i	state	PI\{i\}
0	SOH=zero	0.1336
1	SOH=one	0.1496
2	SOH=two	0.2183
3	SOH=three	0.2384
4	SOH=four	0.1816
5	SOH=five	0.0785

$\mathrm{n} \quad f_{5,0}^{(n)}$
10.05265
20.1476
30.1148
40.09898
50.08469
60.07244
70.06197
80.05302
90.04536
100.0388

Mean First Passage Time Matrix

	0	1	2	3	4	5
0	7.487	6.683	4.58	3.695	4.851	12.74
1	7.487	6.683	4.58	3.695	4.851	12.74
2	7.487	6.683	4.58	3.695	4.851	12.74
3	5.844	5.748	4.303	4.195	6.008	13.9
4	6.892	6.152	4.216	3.695	5.508	14.26
5	$\mathbf{7 . 4 8 7}$	6.683	4.58	3.695	4.851	$\mathbf{1 2 . 7 4}$

56:171 Operations Research
 Quiz \#8 Solutions -- Fall 2001

VERSION A: Coldspot manufactures refrigerators. The company has issued a warranty on all refrigerators that requires free replacement of any refrigerator that fails before it is three years old. Historical data yields the statistics:

- 4% of all new refrigerators fail during their first year of operation.
- 3% of all 1-year-old refrigerators fail during their second year of operation.
- 6% of all 2-year-old refrigerators fail during their third year of operation.

Under current policy, replacement refrigerators are not covered by the warranty!
Define stages to be annual, starting at the day of purchase of the refrigerator, where the state of the system is based upon its age or replacement status:
(0.) new refrigerators
(1.) 1-year-old refrigerators
(2.) 2-year-old refrigerators
(3.) refrigerators that have passed their third anniversary
(4.) replacement refrigerators

Note that, in this model, all ages for past-warranty refrigerators are lumped together, as well as all ages for replacement refrigerators!

$P=$ transition probability matrix:

	0	1	2	3	4
0	0	0.96	0	0	0.04
1	0	0	0.97	0	0.03
2	0	0	0	0.94	0.06
3	0	0	0	1	0
4	0	0	0	0	1

Match the matrices $(\mathbf{a}, \mathbf{b}, \mathbf{c}, \& \mathbf{d})$ below with the notation:
_d 1. E

\mathbf{a}	0	1	2
0	0	0.96	0
1	0	0	0.97
2	0	0	0

a 2. Q
_b 3. A

\mathbf{b}	3	4
0	0.8753	$\mathbf{0 . 1 2 4 7}$
1	0.9118	0.0882
2	0.94	0.06

\mathbf{c}	3	4
0	0	0.04
1	0	0.03
2	0.93	0.07

\mathbf{d}	0	1	2
0	1	0.96	0.9312
1	0	1	0.97
2	0	0	1

b 5. Which states are transient, and which are absorbing?
a. All are transient \& none are absorbing
b. States $\{0,1,2\}$ are transient $\&\{3,4\}$ are absorbing
c. All are absorbing \& none are transient
d. States $\{0,1,2\}$ are absorbing $\&\{3,4\}$ are transient
e. None of the above
d 6. What fraction of the refrigerators will Coldspot expect to replace? (Choose nearest value!)
a. 6\%
c. 10%
e. 14%
g. 18\%
b. 8%
d. $12 \% \mathrm{a}_{04}=12.47 \%$
f. 16%
h. 20%
_d_7. What fraction of one-year-old refrigerators are expected to survive past the warranty period? (Choose nearest value!)
a. 88%
b. 89%
c. 90%
d. $91 \% a_{13}=91.18 \%$
e. 92%
f. 93%
g. 94%
h. 95%
d 8. If Coldspot's cost of replacing a refrigerator is $\$ 500$, what is the expected replacement cost for each refrigerator sold? Choose nearest value!
a. $\$ 30$
b. $\$ 40$
c. $\$ 50$
d. $\$ 6012.47 \% \times \$ 500$
e. $\$ 70$
f. $\$ 80$
g. $\$ 90$
h. $\$ 100$

Coldspot is considering extending its warranty to cover any replacement refrigerators, and in order to estimate the additional replacement costs, has constructed the following model, where the states are defined as before:
$\mathrm{P}=$ transition probabilities

	0	1	2	3
0	0.04	0.96	0	0
1	0.03	0	0.97	0
2	0.06	0	0	0.94
3	0	0	0	1

$=$	
0	3
1	1
2	1

$\mathrm{E}=$				
	0	1	2	row sum
0	1.142	1.097	1.064	3.303
1	0.1008	1.097	1.064	2.261
2	0.06855	0.0658	1.064	1.198

_c 9. Which states are transient, and which are absorbing?
a. All are transient \& none are absorbing
c. States $\{0,1,2\}$ are transient \& $\{3\}$ is absorbing
b. All are absorbing \& none are transient
d. States $\{0,1,2\}$ are absorbing \& $\{3\}$ is transient
e. None of the above
\qquad 10. In addition to the original refrigerator, what is the expected number of new refrigerators each purchaser will own? (That is, how many times will the system return to state 0 ?) (Choose nearest value!)
a. 0.06
b. 0.08
c. 0.10
d. 0.12
e. $0.14\left(\mathrm{e}_{00}=1.142\right)$
f. 0.16
g. 0.18
h. 0.20
11. If Coldspot's cost of replacing a refrigerator is $\$ 500$, what is the expected replacement cost for each refrigerator sold, under this policy? (Choose nearest value!)
a. $\$ 30$
b. $\$ 40$
c. $\$ 50$
d. $\$ 60$
e. $\$ 700.142 \times \$ 500$
f. $\$ 80$
g. $\$ 90$
h. $\$ 100$
\qquad 12. An absorbing state of a Markov chain is one in which the probability of
a. moving out of that state is zero
b. moving out of that state is one.
c. moving into that state is one.
d. moving into that state is zero
e. NOTA

VERSION B: Coldspot manufactures refrigerators. The company has issued a warranty on all refrigerators that requires free replacement of any refrigerator that fails before it is three years old. Historical data yields the statistics:

- 2% of all new refrigerators fail during their first year of operation.
- 4% of all 1 -year-old refrigerators fail during their second year of operation.
- 7\% of all 2-year-old refrigerators fail during their third year of operation.

Under current policy, replacement refrigerators are not covered by the warranty!
Define stages to be annual, starting at the day of purchase of the refrigerator, where the state of the system is based upon its age or replacement status:
(0.) new refrigerators
(1.) 1-year-old refrigerators
(2.) 2-year-old refrigerators
(3.) refrigerators that have passed their third anniversary
(4.) replacement refrigerators

Note that, in this model, all ages for past-warranty refrigerators are lumped together, as well as all ages for replacement refrigerators!

$P=$ transition probability matrix:

	0	1	2	3	4
0	0	0.98	0	0	0.02
1	0	0	0.96	0	0.04
2	0	0	0	0.93	0.07
3	0	0	0	1	0
4	0	0	0	0	1

Match the matrices $(\mathbf{a}, \mathbf{b}, \mathbf{c}, \& \mathbf{d})$ below with the notation:
a $1 . \mathrm{Q}$
b 2. A
c 3. R
d 4. E

\mathbf{a}	0	1	2	\mathbf{b}	3	4	\mathbf{c}	3	
0	0	0.98	0	0	0.8749	0.1251		4	0
1	0	0	0.96	1	0.8928	0.1072	1	0	0.02
2	0	0	0	2	0.93	0.07	2	0.93	0.04
		0.07							

\mathbf{d}	0	1	2
0	1	0.98	0.9408
1	0	1	0.96
2	0	0	1

c 5. Which states are transient, and which are absorbing?
a. All are transient \& none are absorbing
c. States $\{0,1,2\}$ are transient $\&\{3,4\}$ are absorbing
b. All are absorbing \& none are transient
d. States $\{0,1,2\}$ are absorbing $\&\{3,4\}$ are transient
e. None of the above
d_6. What fraction of the refrigerators will Coldspot expect to replace? (Choose nearest value!)
a. 6%
b. 8%
c. 10%
d. $12 \% \mathrm{a}_{04}=12.51 \%$
e. 14%
f. 16%
g. 18%
h. 20%
_b_7. What fraction of one-year-old refrigerators are expected to survive past the warranty period? (Choose nearest value!)
a. 88%
b. $89 \% a_{13}=89.28 \%$
c. 90%
d. 91%
e. 92%
f. 93%
g. 94%
h. 95%
_d 8. If Coldspot's cost of replacing a refrigerator is $\$ 500$, what is the expected replacement cost for each refrigerator sold? Choose nearest value!
a. $\$ 30$
b. $\$ 40$
c. $\$ 50$
d. $\$ 60 \quad 12.51 \% \times \$ 500$
e. $\$ 70$
f. $\$ 80$
g. $\$ 90$
h. $\$ 100$

Coldspot is considering extending its warranty to cover any replacement refrigerators, and in order to estimate the additional replacement costs, has constructed the following model, where the states are defined as before:
$\mathrm{P}=$ transition probabilities

	0	1	2	3
0	0.02	0.98	0	0
1	0.04	0	0.96	0
2	0.07	0	0	0.93
3	0	0	0	1

$\mathrm{E}=$
0
:---
1
2
2.07841

b 9. Which states are transient, and which are absorbing?
a. All are transient \& none are absorbing
b. States $\{0,1,2\}$ are transient $\&\{3\}$ is absorbing
c. All are absorbing \& none are transient d. States $\{0,1,2\}$ are absorbing $\&\{3\}$ is transient
e. None of the above
\qquad 10. In addition to the original refrigerator, what is the expected number of new refrigerators each purchaser will own? (That is, how many times will the system return to state 0 ?) (Choose nearest value!)
a. 0.06
b. 0.08
c. 0.10
d. 0.12
e. $0.14 \mathrm{e}_{00}=1.143$
f. 0.16
g. 0.18
h. 0.20
\qquad 11. If Coldspot's cost of replacing a refrigerator is $\$ 500$, what is the expected replacement cost for each refrigerator sold, under this policy? (Choose nearest value!)
a. $\$ 30$
c. $\$ 50$
e. $\$ 700.143 \times \$ 500$
g. $\$ 90$
b. $\$ 40$
d. $\$ 60$
f. $\$ 80$
h. \$100
\qquad 12. An absorbing state of a Markov chain is one in which the probability of
a. moving out of that state is one
c. moving out of that state is zero.
b. moving into that state is one.
d. moving into that state is zero
e. NOTA

56:171 Operations Research
 Quiz \#9 Solution -- Fall 2001

c_1. Consider P, the matrix of transition probabilities of a discrete-time Markov chain. The sum of each...
a. column is 1
c. row is 1
e. none of the above
b. column is 0
d. row is 0
d 2. To compute the steady state distribution π of a discrete-time Markov chain, one must solve (in addition to sum of components of π equal to 1) the matrix equation (where P^{t} is the transpose of P):
a. $\pi \mathrm{P}=1$
c. $\mathrm{P}^{\mathrm{t}} \pi=\pi$
e. $\pi P=0$
b. $\mathrm{P}^{\mathrm{t}} \pi=1$
d. $\pi P=\pi$
f. none of the above

Consider the discrete-time Markov chain with transition probabilities as shown in the diagram:

$P=\left[\begin{array}{ccc}0.5 & 0.25 & 0.25 \\ 0 & 0.6 & 0.4 \\ 0.75 & 0 & 0.25\end{array}\right]$
3. All of the states of the above Markov chain are
a. recurrent
c. absorbing
e. none of the above
b. transient
d. null
4. Check the two equations which must be satisfied by the steadystate distribution π of the above Markov chain:
$\mathrm{X} \pi_{1}=0.5 \pi_{1}+0.75 \pi_{3}$
$\square \pi_{1}=0.5 \pi_{1}+0.25 \pi_{2}+0.25 \pi_{3}$
$0.5 \pi_{1}+0.25 \pi_{2}+0.25 \pi_{3}=1$
$0.5 \pi_{1}+0.6 \pi_{2}+0.25 \pi_{3}=1$
X $\pi_{1}+\pi_{2}+\pi_{3}=1$
$\square \pi_{3}=0.25 \pi_{1}+0.4 \pi_{2}$

\qquad 5. For a continuous-time Markov chain, consider Λ, the matrix of transition rates. The sum of each...
a. column is 1
c. row is 1
e. none of the above
b. column is 0
d. row is 0
6. To compute the steady state distribution π of a continuous-time Markov chain, one must solve (in addition to sum of components of π equal to 1) the matrix equation (where Λ^{t} is the transpose of Λ):
a. $\pi \Lambda=1$
c. $\Lambda^{\mathrm{t}} \pi=\pi$
e. $\pi \Lambda=0$
b. $\Lambda^{\mathrm{t}} \pi=1$
d. $\pi \Lambda=\pi$
f. none of the above
7. In the case of every continuous-time Markov chain which is currently in state i, the probability distribution of the time until the next transition occurs is
a. Markov
c. Exponential
e. Poisson
b. Binomial
d. Normal
f. none of the above

Consider the continuous-time Markov chain with transition rates as shown in the diagram, where time units are hours:

$\Lambda=\left[\begin{array}{ccc}-3 & 2 & 1 \\ 0 & -4 & 4 \\ 2 & 0 & -2\end{array}\right]$
8. Check the two equations which must be satisfied by the steadystate distribution π of the above Markov chain:
$\square 3 \pi_{1}+4 \pi_{2}+2 \pi_{3}=1$
$\square \pi_{2}=2 \pi_{1}-4 \pi_{2}$
X $2 \pi_{1}-4 \pi_{2}=0$
\square
$2 \pi_{1}+4 \pi_{2}=1$
\square
$\pi_{3}=\pi_{1}+4 \pi_{2}$
\qquad 9. The value of λ_{11} in the transition rate matrix is
a. 0
c. $2 / \mathrm{hr}$
e. $4 / \mathrm{hr}$
b. $1 / \mathrm{hr}$
d. $3 / \mathrm{hr}$
f. none of the above
\qquad 10. The value of λ_{12} in the transition rate matrix is
a. 0
c. $2 / \mathrm{hr}$
e. $4 / \mathrm{hr}$
b. $1 / \mathrm{hr}$
d. $3 / \mathrm{hr}$
f. none of the above
\qquad 11. The average length of time that the above system spends in state 2 before making a transition is...
a. less than 1 hour $(1 / 4 \mathrm{hr})$
c. 2 hours
e. 4 hours
b. 1 hour
d. 3 hours
f. none of the above

> 56:171 Operations Research Quiz \#10 Solution - Fall 2001

Consider the two-server queue with the birth-death model shown below:

c 1. The steadystate probability that the queue is empty is π{0}, where
a. $\frac{1}{\pi_{0}}=\frac{2 \times 2 \times 1}{2 \times 4 \times 4}=\frac{1}{8}$
b. $\frac{1}{\pi_{0}}=1+\frac{2}{2}+\frac{2}{4}+\frac{1}{4}=\frac{11}{4}$
c. $\frac{1}{\pi_{0}}=1+\frac{2}{2}+\frac{2}{2} \times \frac{2}{4}+\frac{2}{2} \times \frac{2}{4} \times \frac{1}{4}=\frac{21}{8}$
d. $\frac{1}{\pi_{0}}=\frac{2}{2}+\frac{2}{2} \times \frac{2}{4}+\frac{2}{2} \times \frac{2}{4} \times \frac{1}{4}=\frac{13}{8}$
e. $\frac{1}{\pi_{0}}=\frac{2}{2}+\frac{2}{4}+\frac{1}{4}=\frac{7}{4}$
f. None of the above
_a
2. The steadystate probability π_{1} that one server is busy is equal to
a. π_{0}
c. $\frac{1}{2} \pi_{0}$
e. $\frac{1}{4} \pi_{0}$
b $2 \pi_{0}$
d. $4 \pi_{0}$
f. None of the above
e 3. The average time spent by a customer in the system (including the time being served) is usually denoted by
a. λ
c. μ
e. W
b. N
d. L
f. None of the above
_
4. If the average number of customers in the system is 0.9 , and the average arrival rate is 1.7 per hour, then the average time spent by a customer in the system is (choose nearest value)
a. 0.25 hr
b. 1 hr
c. $0.5 \mathrm{hr}(0.9 / 1.7=0.53)$
d. 1.25 hr
e. 0.75 hr
f. $>1.5 \mathrm{hr}$

Consider a capacity expansion planning problem similar to that in this week's homework assignment. (Costs are expressed in millions of dollars.) As in that homework assignment, at most three plants may be added in a year. The fixed cost for adding one or more plants is any year is $\mathbf{1 . 5}$, and the marginal cost is $\mathbf{5 . 5}$ per plant (same for all years.) The discount factor to be used for computing present value is 0.9 .
The numbers of additional plants needed, by year, are

Version (a):

Year	1	2	3	4	5	6
\# add'l plants	1	2	4	5	7	8

Version (b):

Year	1	2	3	4	5	6
\# add'l plants	1	2	4	6	7	8

That is, at the end of six years, eight plants (in addition to the current capacity) must be added. The stages are numbered in chronological order, i.e., stage 1 is the beginning stage, and stage 6 is the last stage.
The computational results in stages 5 \& 6 are identical in both versions:

---Stage				$6---$
s	$\backslash \mathrm{x}:$	0	1	Min
7	9999.99	7.00	7.00	
8		0.00	9999.99	0.00

Stage 5---					
S	$\mathrm{x}: 0$	1	2	3	Min
5	999.99	999.99	18.80	18.00	18.00
6	999.99	13.30	12.50	999.99	12.50
7	6.30	7.00	999.99	999.99	6.30
8	0.00	999.99	999.99	999.99	0.00

Version（a）：

-- Stage						$4---$
s	$\mathrm{x}:$	0	1	2	3	Min
4	999.99	23.20	23.75	23.67	23.20	
5	16.20	18.25	18.17	18.00	16.20	
6	11.25	12.67	12.50	999.99	11.25	
7	5.67	7.00	999.99	999.99	5.67	
8	0.00	999.99	999.99	999.99	0.00	

－－－Stage 3－－－					
s \backslash	x ： 0	1	2	3	Min
2	999.99	999.99	33.38	32.58	32.58
3	999.99	27.88	27.08	28.13	27.08
4	20.88	21.58	22.63	23.10	20.88
5	14.58	17.13	17.60	18.00	14.58
6	10.13	12.10	12.50	999.99	10.13

米米米米米米米米米米米

Version（b）：

-- Stage						$4---$
s	$\mathrm{x}:$	0	1	2	3	Min
4	999.99	999.99	23.75	23.67	23.67	
5	999.99	18.25	18.17	18.00	18.00	
6	11.25	12.67	12.50	999.99	11.25	
7	5.67	7.00	999.99	999.99	5.67	
8	0.00	999.99	999.99	999.99	0.00	

$\mathrm{s} \backslash \mathrm{x}:$	0	1	－－Stage 2－－－				
1	999.99	37.42	37.81	37.17	37.17		
2	30.42	32.31	31.67	32.58	30.42		
3	25.31	26.17	27.08	27.11	25.31		

－－－Stage 3－－－					
2	999.99	999.99	33.80	34.20	33.80
3	999.99	28.30	28.70	28.13	28.13
4	21.30	23.20	22.63	23.10	21.30
5	16.20	17.13	17.60	18.00	16.20
6	10.13	12.10	12.50	999.99	10.13

s	$x:-$ Stage	1－－－				
0	999.99	40.46	39.88	40.78	39.88	

5．One value is missing in the table for Stage 1 （i．e．，the current year，in which 0 plants have already been added， and the decision is to add 1 plant）．This value is version（a）： $39.69=(1.5+5.5)+0.9 \times 36.32 \quad$ version（b）： $40.46=(1.5+5.5)+0.9 \times 37.17$

6．One value is missing in the table for Stage 4．This value is
version（a）：＿23．67
version（b）：＿23．67
Questions \＃7－9 are answered by doing a＂forward pass＂through the tables：
version（a）：

$$
X_{1}=2, X_{2}=0, X_{3}=3, X_{4}=0, X_{5}=3, X_{6}=0
$$

version（b）：
$X_{1}=2, X_{2}=0, X_{3}=2, X_{4}=3, X_{5}=0, X_{6}=1$

7．The optimal number of plants to add in the first year（ $1^{\text {st }}$ stage）is
version（a）：＿﹎﹎
version（b）：＿2
8．The optimal number of plants to add in the second year $\left(2^{\text {nd }}\right.$ stage $)$ is
version（a）： 0 version（b）： 0
9．The optimal number of plants to add in the final year（ $6^{\text {th }}$ stage）is
version（a）： 0
version（b）：＿1
10．The minimum total present value of the cost of adding the 8 plants is
version（a）： 38.89
version（b）：＿39．88

1. Redistricting Problem A state is to be allocated twenty representatives (Reps) to be sent to the national legislature. There are nine districts within the state, whose boundaries are fixed. Every district should be assigned at least one representative. The allocation should be done according to the population (Pop) of the districts:

District	1	2	3	4	5	6	7	8	9
Population	47	52	67	41	61	99	16	68	35
Target α_{n}	1.93	2.14	2.76	1.69	2.51	4.07	0.66	2.80	1.44

The "target allocation" of district i is Reps times Pop[i] divided by the population of the state, but this target is generally non-integer. If each target is rounded to the nearest integer, $\mathbf{2 1}$ representatives are required (one more than has been allocated to the state). The objective is the assign the representatives to the districts in such a way that the maximum absolute deviation from the targets is as small as possible.

In the DP model, there is a stage for each district, and the state of the system is the number of representatives not yet assigned when we decide upon the allocation to district i. The optimal value function is defined by a forward recursion:

$$
\left\{\begin{array}{l}
f_{n}(s)=\operatorname{minimum~}_{x \in[1,2,3)} \max \left\{\left|\alpha_{\mathrm{n}}-x\right|, f_{n+1}(s-x)\right\} \\
f_{0}(0)=0 \& f_{0}(s)=+\infty \text { for } s>0
\end{array}\right.
$$

That is, the optimal value function $f_{n}(s)$ at stage n with state s is the smallest possible value of the maximum absolute deviations from the targets α of the allocation to districts $n, n+1, \ldots .9$ if the total number of representatives available to those districts is given by the state s.

Version a:

District	1	2	3	4	5	6	7	8	9
Population	47	52	67	41	61	99	16	68	35
Target α_{n}	1.93	2.14	2.76	1.69	2.51	4.07	0.66	2.80	1.44

a. Compute the missing value in the table below for stage 3. Solution: Target is 2.76 , and so, if $\mathrm{s}=18 \& \mathrm{x}=2$, the value would be $\max \left\{|2.76-2|, f_{4}(18-2)\right\}=\max \{0.76,1.20\}=1.20$
b. There is one optimal solution to this problem. Complete the optimal allocations of representatives to districts. Solution:

District	1	2	3	4	5	6	7	8	9
Allocation	2	2	3	2	2	4	1	3	1

Stage						
$\begin{array}{l}9--- \\ \mathrm{S}\end{array} \mathrm{x}: 1$	2	3	4	Min		
1	\mid	0.44	999.99	999.99	999.99	0.44

Stage 7---

s	$\backslash \mathrm{x}: 1$	2	3	4	Min	
5	1	0.44	1.34	2.34	999.99	0.44

Stage 6---

| $s \backslash x: 1$ | 2 | 3 | 4 | Min | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 9 | 3.07 | 2.07 | 1.07 | 0.44 | 0.44 |

Stage 5---

| s | $x: 1$ | 2 | 3 | 4 | Min |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 11 | 1.51 | 0.51 | 0.80 | 1.49 | 0.51 |

Stage 4---

$s \backslash x: 1$	2	3	4	Min	
13	0.69	0.51	1.31	$2.31 \mid$	0.51

Stage 3---

$\mathrm{S} \backslash \mathrm{x}: 1$	2	3	4	Min	
16	1.76	0.76	0.51	$1.24 \mid$	0.51
18	1.76	1.20	0.56	$1.24 \mid$	0.56

Stage 2---

s	$x: 1$	2	3	4	Min
18	1.14	0.51	0.86	1.86	0.51

Stage 1---

$s \backslash x: 1$	2	3	4	Min	
20	\mid	0.93	0.51	1.07	2.07

Version b:

District	1	2	3	4	5	6	7	8	9
Population	20	57	80	30	15	17	25	76	37
Target α_{n}	1.12	3.19	4.48	1.68	0.84	0.95	1.40	4.26	2.07

a. Compute the missing value in the table below for stage 3. Solution: Target is 4.48 , and so, if $\mathrm{s}=18 \& \mathrm{x}=2$, the value would be $\max \left\{|4.48-2|, f_{4}(18-2)\right\}=\max \{2.48,1.32\}=2.48$
b. There is one optimal solution to this problem. Complete the optimal allocations of representatives to districts. Solution:

District		1	2		3	4	5	5	6	7	8	9	
Allocation		1	3		4	2	1	1	1	2	4	2	
$\begin{gathered} \text { Stage } 9--1 \\ \mathrm{~s} \backslash \mathrm{x}: 1 \end{gathered}$	2	3	4 \|	Min			Stag	ge		2	3	4	Min
2199.99	0.07	99.99	99.991	0.07			12	2	10.93	0.60	1.32	2.321	0.60
$\begin{gathered} \text { Stage } 8--- \\ \mathrm{s} \backslash \mathrm{x}: 1 \\ \hline \end{gathered}$	2	3		Min			Stage 3---			2			
6 \| 99.99	2.26	1.26	0.261	0.26			$\frac{\mathrm{S}}{16}$		$\frac{18: 1}{13.48}$	2.48	1.48	$\frac{4 \quad 1}{0.601}$	$\frac{\operatorname{Min}}{0.60}$
Stage 7---							18	8	13.48	2.48	1.48	1.051	1.05
s $\backslash \mathrm{x}: 1$ 8 \| 0.93	2	3	41	Min									
	0.60	1.60	2.601	0.60			Stag	ge	2---				
									\x: 1	2	3	4 \|	Min
Stage 6---		3		Min					\| 2.19	1.19	0.60	0.811	0.60
910.60	1.05	2.05	3.051	0.60			Stag	ge	1---				
Stage 5--- s \x: 1		3	4	Min					$1 \mathrm{x}: 1$	2	3	41	Min
							20	01	10.60	0.88	1.88	2.88 ।	0.60

2. Stochastic Production Planning. The state of the system is the "inventory position", which if positive is the stock on hand, and if negative is the number of backorders which have accumulated, which is observed at the end of the business day. The decision is the number of units to be produced, which is no more than 3 . There is a setup cost of $\$ 10$ if any units are produced, plus $\$ 4$ per unit. We assume that production is completed in time to meet any demand that occurs the next day. In addition, there is a storage cost of $\$ 1$ per unit, based upon the end-of-day inventory, and a shortage cost of $\$ 15$ per unit, based upon any backorders. Finally, at the end of the planning period (5 days), a salvage value of $\$ 2$ per unit is received for any remaining inventory. If any shortage exists at the end of the planning period, enough must be produced to satisfy that shortage.
A backward recursion is used, where $f_{n}(s)$ is the minimum expected cost of the final n days of the planning period if the initial inventory position is s. Initially, with 5 days remaining (i.e., stage 5) there are 2 units in inventory, so that we wish to compute $f_{5}(2)$.

Below are the tables used to compute the optimal production policy.

Note: The data is the same as in the homework exercise, except that the probability distribution differs slightly!

Version a:

The demand is a discrete random variable with stationary distribution

D	0	1	2	3	4
$\mathrm{P}\{\mathrm{D}\}$	0.1	0.2	0.2	0.3	0.2

a. What is the missing value in the table for stage 1 ? 23.00

Computation: cost of last day is 1 (storage) +18 (production) $=\underline{19}$
Expected remaining cost is $0.1(\underline{-2 \times 3})+0.2(-2 \times 2)+0.2(-2 \times 1)+0.3(0)+0.2(\underline{15+14})=\underline{4}$
b. What is the missing value in the table for stage 5 ? _ 96.49

Computation: cost of stage 5 is 2 (storage) +18 (production) $=\underline{20}$
Expected remaining cost is $0.1 \times \mathrm{f}_{4}(4)+0.2 \times \mathrm{f}_{4}(3)+0.2 \times \mathrm{f}_{4}(2)+0.3 \times \mathrm{f}_{4}(1)+0.2 \times \mathrm{f}_{4}(0)$

$$
=0.1 \times \underline{60.35}+0.2 \times \underline{68.32}+0.2 \times \underline{73.17}+0.3 \times \underline{79.35}+0.2 \times \underline{91.78}=\underline{76.49}
$$

c. What is the optimal production decision at the initial stage (stage 5)? produce 3
d. What is the minimum expected cost (total of production, storage, and shortage costs) for the 5-day period? 92.97
e. Suppose that the demand in the first day (i.e., stage 5) is 1 . What is the optimal production decision for day 2 (i.e., stage 4)? __ produce 0
Stage 1

s \ x:0	1	2	3	Min
1 \| 34.40	32.50	23.00	19.60।	19.60
Stage 4				
S $\backslash \mathrm{x}: 0$	1	2	3	Min
0 \|152.80	137.74	110.82	91.781	91
1 \| 124.74	107.82	88.78	79.351	79.35
2 \| 94.82	85.78	76.35	73.171	73.17
$3 \mid 72.78$	73.35	70.17	68.321	68.32
4 \| 60.35	67.17	65.32	63.731	60.

[^1]
Version b:

The demand is a discrete random variable with stationary distribution

D	0	1	2	3	4
$\mathrm{P}\{\mathrm{D}\}$	0.2	0.2	0.2	0.2	0.2

a. What is the missing value in the table for stage 1 ? \qquad
Computation: cost of last day is $1($ storage $)+18(\underline{\text { production })}=\underline{19}$
Expected terminal cost is $0.2(-2 \times 3)+0.2(-2 \times 2)+0.2(-2 \times 1)+0.2(\underline{0})+0.2(15+14)=3.4$
b. What is the missing value in the table for stage 5 ? _ 87.94

Computation: cost of stage 5 is 2 (storage) +18 (production) $=\underline{20}$
Expected remaining cost is $0.2 \times \mathrm{f}_{4}(4)+0.2 \times \mathrm{f}_{4}(3)+0.2 \times \mathrm{f}_{4}(2)+0.2 \times \mathrm{f}_{4}(1)+0.2 \times \mathrm{f}_{4}(0)$

$$
=0.2 \times \underline{53.86}+0.2 \times \underline{62.08}+0.2 \times \underline{66.84}+0.2 \times \underline{72.86}+0.2 \times \underline{84.08}=\underline{67.94}
$$

c. What is the optimal production decision at the initial stage (stage 5)? produce 3
d. What is the minimum expected cost (total of production, storage, and shortage costs) for the 5-day period? 84.70
e. Suppose that the demand in the first day (i.e., stage 5) is 2 . What is the optimal production decision for day 2 (i.e., stage 4)? _produce 3

56:171 Operations Research
 Quiz \#12 - Version A ($\mathrm{P}_{\text {win }}=45 \%$) - Solution - Fall 2001

Casino Problem Consider the "Casino Problem" as presented in the lectures, but with six plays of the game, and the goal being to accumulate at least five chips, beginning with 2 chips, where the probability of winning at each play of the game is only $\mathbf{4 5 \%}$.
In the DP model with results presented below, the recursion is "forward", i.e., the stages range from $n=1$ (first play of the game) to $n=6$ (final play of the game). The state is the number of chips accumulated, and the decision is the number of chips to bet at the current play of the game.
a. Compute the missing number in the table for stage 1. 0.499

Solution: $0.45 \times \mathrm{f}_{2}(4)+0.55 \times \mathrm{f}_{2}(2)=0.45 \times 0.725+0.55 \times 0.3 \overline{14}=0.499$

S	1	$\mathrm{x}: 0$	1	2	3	4	5	Max
0	\|	0.000	XXXXXX	XXXXX	XXXXX	XXXXX	XXXXX	0.000
1	\|	0.000	0.000	XXXXX	XXXXXXX	XXXXXXX	XXXXXX	0.000
2	\|	0.000	0.000	0.000	XXXXXX	XXXXXXX	XXXXXX	0.000
3	3	0.000	0.000	0.450	0.450	XXXXXX	XXXXXX	0.450
4	4	0.000	0.450	0.450	0.450	0.450	XXXXX	0.450
5	5	1.000	0.450	0.450	0.450	0.450	0.4501	1.000

b. What is the probability that five chips can be accumulated at the end of six plays of the game? Solution: 32.6 \%
c. How many chips should be bet at the first play of the game? Solution: \qquad
d. If one bets the amount you selected in (c) and the first play of the game is won, what should be the bet at the second play of the game? Solution: you would then have four chips, and should bet \qquad
e. If the first play of the game is lost, what should be the bet at the second play of the game? Solution: you would have no chips remaining, and must bet none.

---Stage 3-							
s	\x:0	1	2	3	4	5	Max
0	0.000	XXXXXX	xXXXXX	XXXXXX	Xxxxx	Exxxxxx\|	0.00
1	0.091	0.141	XXXXXX	XXXXXX	XXXXXX	Axxxxxxx\|	0.141
2	0.314	0.253	0.314	XXXXX	XXXXXX	Axxxxxxx\|	0.314
3	0.450	0.487	0.500	0.450	XXXXX	Axxxxxxx\|	0.500
4	0.698	0.698	0.623	0.500	0.450	XXXXX\|	0.698
	1.000	0.834	0.698	0.62	0.50		

	--- Stage					
s	$\mathrm{x}: 0$	1	2	3	4	5
0	0.000	$\mathrm{XXXXXXXXXXXXXXXXXXXXXXXXXXXXX\mid}$	0.000			
1	0.141	0.141	$X \mid$	0.141		
2	0.314	0.303	0.314	XXXXXXXXXXXXXXXXX\|	0.314	
3	0.500	0.487	0.528	0.450	$X X X X X X X X X X X \mid$	0.528
4	0.698	0.725	0.623	0.528	0.450	$X X X X X \mid$
5	1.000	0.834	0.725	0.623	0.528	0.450
5	1.000					

[^0]: © D.L.Bricker
 Dept of Mechanical \& Industrial Engineering
 University of Iowa

[^1]: Stage 5

 | s S $\mathrm{x}:$ | 0 | 1 | 2 | 3 | Min |
 | :---: | :---: | :---: | :---: | :---: | :---: |
 | 2 | $\mid 117.64$ | 106.84 | 96.50 | $92.97 \mid$ | 92.97 |

