56:171
 Operations Research Fall 1999

 Quizzes

 Quizzes}

[^0]\qquad

For each statement, indicate " + "=true or " o "=false.
___ a. . A "pivot" in a nonbasic column of a tableau will make it a basic column.
b. If a zero appears on the right-hand-side of row i of an LP tableau, then at the next iteration you cannot pivot in row i.
__ c. In the simplex method, every variable of the LP is either basic or nonbasic.
d. The restriction that X1 be nonnegative should be entered into LINDO as the constraint $\mathrm{X} 1>=0$.
\qquad e. A "pivot" in the simplex method corresponds to a move from one corner point of the feasible region to another.
\qquad f. The feasible region is the set of all points that satisfy at least one constraint.
__ g. The number of basic variables in an LP is equal to the number of rows, including the objective function row.
\qquad h. A "pivot" in row i of the column for variable X_{j} will increase the number of basic variables.
__ i. Basic solutions of an LP with constraints $\mathrm{A} x \leq b, \mathrm{x} \geq 0$ correspond to "corner" points of the feasible region.
__ j. In the simplex tableau, the objective row is written in the form of an equation.

Multiple-Choice:

___k. If you make a mistake in choosing the pivot column in the simplex method, the solution in the next tableau
(a) will be nonbasic
(c) will have a worse objective value
(b) will be infeasible
(d) None of the above
\qquad 1. If you make a mistake in choosing the pivot row in the simplex method, the solution in the next tableau
(a) will be nonbasic
(c) will have a worse objective value
(b) will be infeasible
(d) None of the above

```
<><><><><><>><><><><>><>
```

Cattle feed can be mixed from oats, corn, alfalfa, and peanut hulls. The following table shows the current cost per ton (in dollars) of each of these ingredients, together with the percentage of recommended daily allowances for protein, fat, and fiber that a serving of it fulfills.

	Oats	Corn	Alfalfa	Peanut hulls
$\%$ protein	60	80	55	40
$\%$ fat	50	70	40	100
$\%$ fiber	90	30	60	80
Cost $\$$ ton	200	150	100	75

We want to find a minimum cost way to produce feed that satisfies at least 60% of the daily allowance for protein and fiber while not exceeding 60% of the fat allowance.
\qquad

The optimal solution is to mix \qquad pounds of corn and \qquad pounds of alfalfa to obtain a ton (i.e. 2000 pounds) of feed. The cost of a ton of feed is $\$$ \qquad _.

There are \qquad basic variables in the optimal solution, in addition to -Z (in the cost equation).

Consider the following LP:

The feasible region is bounded by points \qquad .
At point \mathbf{H}, the slack variable for constraint \# \qquad is positive. Let X_{3}, X_{4}, and X_{5} represent the slack in constraints 1, 2, and 3, respectively. The coefficients of $\mathrm{X}_{3}, \mathrm{X}_{4}$, and X_{5} in the initial tableau are \qquad .
Initially, the basic variables are \qquad (plus -Z representing the profit function).
The optimal solution is at point \qquad ,
where the basic variables are \qquad (plus -Z).
\qquad

56:171 Operations Research
 Quiz \#2 - September 15, 1999

Below are several simplex tableaus. Assume that the objective in each case is to be minimized. Classify each tableau by writing to the right of the tableau a letter A through \mathbf{G}, according to the descriptions below. Also answer the question accompanying each classification, if any.
(A) Nonoptimal, nondegenerate tableau with bounded solution. Circle a pivot element which would improve the objective.
(B) Nonoptimal, degenerate tableau with bounded solution. Circle an appropriate pivot element.
(C) Unique nondegenerate optimum.
(D) Optimal tableau, with alternate optimum. Circle a pivot element which would lead to another optimal basic solution.
(E) Objective unbounded (below). Specify a variable which, when going to infinity, will make the objective arbitrarily low.
(F) Tableau with infeasible primal

Warning: Some of these classifications might be used for more than one tableau, while others might not be used at all!

(i) -z	X_{1}	X_{2}	X_{3}	X_{4}	X_{5}	X_{6}	X_{7}	X_{8}	RHS
1	3	0	-1	3	0	0	2	-2	-45
0	0	0	-4	0	0	1	3	0	9
0	-4	1	2	-5	0	0	-2	1	0
0	-6	0	3	-2	1	0	-4	3	5
(ii) -z	X_{1}	X_{2}	X_{3}	X_{4}	X_{5}	x_{6}	x_{7}	X_{8}	RHS
1	3	0	0	1	0	0	0	12	-45
0	0	0	-4	0	0	1	3	0	9
0	4	1	2	-5	0	0	2	1	8
0	-6	0	3	-2	1	0	-4	3	5
(iii)-z	x_{1}	X_{2}	X_{3}	X_{4}	X_{5}	x_{6}	x_{7}	X_{8}	RHS
1	3	0	1	4	0	0	-2	2	-45
0	0	0	-4	0	0	1	-3	0	3
0	4	1	2	-5	0	0	2	1	-8
0	-6	0	3	-2	1	0	-4	3	15
(iv) -z	X_{1}	X_{2}	X_{3}	X_{4}	X_{5}	X_{6}	X_{7}	X_{8}	RHS
1	3	0	1	3	0	0	2	0	-45
0	0	0	-4	0	0	1	3	0	9
0	-6	0	3	-2	1	0	-4	3	5
0	4	1	2	-5	0	0	2	1	8

\qquad

(v) -z	X_{1}	x_{2}	X_{3}	X_{4}	X_{5}	x_{6}	X_{7}	x_{8}	RHS
1	3	0	1	1	0	0	-2	0	-45
0	4	1	2	-5	0	0	2	1	5
0	-6	0	3	2	1	0	-4	3	0
0	0	0	-4	0	0	1	3	0	9
(vi) -z	X_{1}	x_{2}	X_{3}	X_{4}	X_{5}	x_{6}	x_{7}	X_{8}	RHS
1	2	0	-1	3	0	0	2	0	-45
0	0	0	-4	0	0	1	3	0	9
0	6	0	3	-2	1	0	-4	3	5
0	4	1	2	-5	0	0	2	1	8
(vii)-z	X_{1}	x_{2}	X_{3}	X_{4}	X_{5}	x_{6}	X_{7}	X_{8}	RHS
1	3	0	1	1	0	0	3	5	-45
0	0	0	-4	0	0	1	3	0	3
0	4	1	2	-5	0	0	2	1	7
0	-6	0	3	-2	1	0	-4	3	15
(viii)-z	X_{1}	X_{2}	X_{3}	X_{4}	X_{5}	X_{6}	x_{7}	x_{8}	RHS
1	3	0	1	-3	0	0	2	0	-45
0	0	0	-1	0	0	1	3	0	9
0	4	1	-4	-5	0	0	2	1	3
0	-6	0	3	-2	1	0	-4	3	5
(ix) -z	X_{1}	x_{2}	X_{3}	X_{4}	X_{5}	x_{6}	X_{7}	X_{8}	RHS
1	-3	0	1	1	0	0	2	3	-45
0	0	0	-4	0	0	1	0	0	9
0	-6	0	3	-2	1	0	2	3	5
0	4	1	2	-5	0	0	1	1	8

\qquad

56:171 Operations Research
 Quiz \#3 - September 22, 1999

Consider the LP problem:

$$
\begin{array}{cl}
\text { Max w }=4 & 4+2 \mathrm{Y}_{2}-\mathrm{Y}_{3} \\
\text { s.t. } & \mathrm{Y}_{1}+2 \mathrm{Y}_{2} \leq 6 \\
& \mathrm{Y}_{1}-\mathrm{Y}_{2}+2 \mathrm{Y}_{3}=8 \\
& \mathrm{Y}_{1} \geq 0, \mathrm{Y}_{2} \leq 0\left(\mathrm{Y}_{3} \text { is unrestricted in sign }\right)
\end{array}
$$

(Note: this differs somewhat from that in the HW exercise!) The dual of the above problem is

For each statement, indicate " + "=true or " o " $=$ false.
\qquad 1. If you increase the right-hand-side of a " \leq " constraint in a minimization LP, the optimal objective value will either increase or stay the same.
\qquad 2. If the increase in the cost of a nonbasic variable remains less than the "ALLOWABLE

INCREASE" reported by LINDO, then the optimal values of all variables will be unchanged.
3. The "reduced cost" in an LP solution provides an estimate of the change in the objective value when a nonbasic variable increases.
\qquad 4. In the two-phase simplex method, Phase One computes the optimal dual variables, followed by Phase Two in which the optimal primal variables are computed.
\qquad 5. At the completion of the revised simplex method applied to an LP, the simplex multipliers give the optimal solution to the dual of the LP.
6. When entering your LP model, the last constraint which you enter should be followed by "END".
7. If a minimization LP problem has a cost which is unbounded below, then its dual problem cannot be feasible.
\qquad 8. If the increase in the right-hand-side of a "tight" constraint remains less than the "ALLOWABLE INCREASE" reported by LINDO, then the optimal values of all variables will be unchanged.
\qquad 9. The "minimum ratio test" is used to select the pivot column in the simplex method for linear programming.
\qquad 10. If a minimization LP problem is infeasible, then its dual problem has an objective (to be maximized) which must be unbounded above.
\qquad

> | 56:171 Operations Research |
| :--- |
| Quiz \#4 - September 29, 1999 |

Linear Programming sensitivity. SunCo processes oil into aviation fuel and heating oil. It costs $\$ 40$ to purchase each barrel of oil, which is then distilled and yields 0.5 barrel of aviation fuel and 0.5 barrel of heating oil. Output from the distillation may be sold directly or processed in the catalytic cracker. If sold after distillation without further processing, aviation fuel sells for $\$ 60 / \mathrm{barrel}$. If sold after distillation without further processing, heating oil sells for $\$ 40 /$ barrel. It takes 1 hour to process 1000 barrels of aviation fuel in the catalytic cracker, and these can be sold for $\$ 130 / b a r r e l$. It takes 45 minutes to process 1000 barrels of heating oil in the cracker, and these can be sold for $\$ 90 /$ barrel. Each day, at most 20,000 barrels of oil can be purchased, and 8 hours of catalytic cracker time are available. Formulate an LP to maximize SunCo's profits.

Define the decision variables
OIL = \# of barrels of oil purchased
HSOLD = \# of barrels of heating oil sold
HCRACK = \# of barrels of heating oil processed in catalytic cracker
ASOLD = \# of barrels of aviation fuel sold
ACRACK = \# of barrels of aviation fuel processed in catalytic cracker
The LP model to maximize profit is

```
Maximize 40 HSOLD + 90 HCRACK + 60 ASOLD + 130 ACRACK - 40 OIL
subject to OIL = 20000 (available supply)
    0.5 OIL = ASOLD + ACRACK (aviation fuel & heating oil
    0.5 OIL = HSOLD + HCRACK each constitute 50% of
                                product of distilling)
    0.001 ACRACK + 0.00075 HCRACK = 8 (avail. time for cracker)
        OIL >= 0, ASOLD >=0, ACRACK >=0, HSOLD >=0, HCRACK >=0
```

The output of LINDO follows:

```
MAX 40 HSOLD + 90 HCRACK + 60 ASOLD + 130 ACRACK - 40 OIL
SUBJECT TO
            2) OIL <= 20000
            3) - ASOLD - ACRACK + 0.5 OIL = 0
            4) - HSOLD - HCRACK + 0.5 OIL = 0
            5) 0.00075 HCRACK + 0.001 ACRACK <= 8
END
LP OPTIMUM FOUND
            OBJECTIVE FUNCTION VALUE
            1) 760000.000
\begin{tabular}{rrr} 
VARIABLE & VALUE & REDUCED COST \\
HSOLD & 10000.000000 & .000000 \\
HCRACK & .000000 & 2.500000 \\
ASOLD & 2000.000300 & .000000 \\
ACRACK & 8000.000000 & .000000 \\
OIL & 20000.000000 & .000000
\end{tabular}
ROW SLACK OR SURPLUS DUAL PRICES
\begin{tabular}{lrr}
\(2)\) & .000000 & 10.000000 \\
\(3)\) & .000000 & -60.000000 \\
\(4)\) & .000000 & -40.000000 \\
\(5)\) & .000000 & 70000.000000
\end{tabular}
```

RANGES IN WHICH THE BASIS IS UNCHANGED:
\qquad

OBJ COEFFICIENT RANGES							
VARIABLE	CURRENT		ALLOWABLE		ALLOWABLE		
	COEF		INCREASE		DECREASE		
HSOLD	40.000000		INFINITY		2.500000		
HCRACK 90.000000			2.500000		INFINITY		
ASOLD 60.000000			3.333333		20.000000		
ACRACK	130.000000		INFINITY		3.333333		
OIL	-40.000000		INFINITY		10.000000		
RIGHTHAND SIDE RANGES							
ROW	CURRENT		ALLOWABLE		ALLOWABLE		
		RHS	INCREASE		DECREASE		
2	20000.0	00000	INFINITY		4000.001000		
3		00000	2000.000300		INFINITY		
4		00000	10000.000000		INFINITY		
5	8.000000		2.000000		8.000000		
THE TABLEAU							
ROW	(BASIS)	HSOLD	HCRACK	ASOLD	ACRACK	OIL	SLK 2
1	ART	. 000	2.500	. 000	. 000	. 000	10.000
2	OIL	. 000	. 000	. 000	. 000	1.000	1.000
3	ASOLD	. 000	-. 750	1.000	. 000	. 000	. 500
4	HSOLD	1.000	1.000	. 000	. 000	. 000	. 500
5	ACRACK	. 000	. 750	. 000	1.000	. 000	. 000
ROW	SLK 5						
1	0.70E+05	$0.76 \mathrm{E}+06$					
2	. 000	20000.000					
3	-1000.000	2000.000					
4	. 000	10000.000					
5	1000.000	8000.000					

Using the LINDO output above, answer the following questions:
A. The optimal solution is to
purchase \qquad barrels of oil,
produce \qquad barrels of heating oil and \qquad barrels of aviation fuel.
sell \qquad barrels of heating oil without further processing, and process
sell \qquad arrels in the catalytic cracker.
\qquad barrels in the catalytic cracker.
B. This plan should generate a profit of \$ \qquad _.
C. If 21,000 barrels of oil is available for purchase, profit will be increased by $\$$ \qquad
D. If the selling price of (unprocessed) heating oil were to drop by 10%, will the optimal solution change?
E. A shutdown of the catalytic cracker for 15 minutes of repair will result in a $\$$ \qquad loss in profit..
F. Shutting down the catalytic cracker for 15 minutes is equivalent to \qquad (increasing/decreasing) the variable SLK5 by that amount.
G. Shutting down the catalytic cracker for 15 minutes will result in the following revised optimal solution:
purchase \qquad barrels of oil,
produce \qquad barrels of heating oil and \qquad barrels of aviation fuel.
sell \qquad barrels of heating oil without further processing, and process
sell \qquad barrels in the catalytic cracker.
\qquad barrels of the aviation fuel without further processing, and process barrels in the catalytic cracker.
\qquad

56:171 Operations Research
 Quiz \#5 - October 6, 1999

Consider the following payoff table in which you must choose among three possible alternatives, after which two different states of nature may occur. (Nothing is known about the probability distribution of the state of nature.)

	State of Nature	
Decision	1	2
1	5	1
2	6	4
3	2	7

1. What is the optimal decision if the maximin criterion is used? \qquad
2. What is the optimal decision if the maximax criterion is used? \qquad
3. Create the regret table:

	State of Nature	
Decision	1	2
1	-	-
2	-	-
3	-	-

4. What is the optimal decision if the minimax regret is used? \qquad
General Custard Corporation is being sued by Sue Smith. Sue must decide whether to accept an offer of $\$ 60,000$ by the corporation to settle out of court, or she can go to court. If she goes to court, there is a 25% chance that she will win the case (event W) and a 75% chance she will lose (event L). If she wins, she will receive $\$ 200,000$, but if she loses, she will net $\$ 0$. A decision tree representing her situation appears below, where payoffs are in thousands of dollars:

5. What is the decision which maximizes the expected value? \qquad a. settle \qquad

For $\$ 20,000$, Sue can hire a consultant who will predict the outcome of the trial, i.e., either he predicts a loss of the suit (event PL), or he predicts a win (event PW). The consultant is correct 90% of the time, e.g., if the suit will win, the probability that the consultant predicts the win is 90%.

Bayes' Rule states that if S_{i} is one of the n states of nature and O_{j} is the outcome of an experiment,

$$
\mathrm{P}\left\{\mathrm{~S}_{\mathrm{i}} \mid \mathrm{O}_{\mathrm{j}}\right\}=\frac{\mathrm{P}\left\{\mathrm{O}_{\mathrm{j}} \mid \mathrm{S}_{\mathrm{i}}\right\} \mathrm{P}\left\{\mathrm{~S}_{\mathrm{i}}\right\}}{\mathrm{P}\left\{\mathrm{O}_{\mathrm{j}}\right\}} \text {, where } \mathrm{P}\left\{\mathrm{O}_{\mathrm{j}}\right\}=\sum_{\mathrm{k}=1}^{\mathrm{n}} \mathrm{P}\left\{\mathrm{O}_{\mathrm{j}} \mid \mathrm{S}_{\mathrm{k}}\right\} \mathrm{P}\left\{\mathrm{~S}_{\mathrm{k}}\right\}
$$

6. The probability that the consultant will predict a win, i.e. $\mathrm{P}\{\mathrm{PW}\}$ is (choose nearest value)
a. $\leq 25 \%$
b. 30%
c. 35%
d. 40%
e. 45%
f. $\geq 50 \%$
\qquad
\qquad 7. According to Bayes' theorem, the probability that Sue will win, given that the consultant predicts a win, i.e. $\mathrm{P}\{\mathrm{W} \mid \mathrm{PW}\}$, is (choose nearest value)
a. $\leq 25 \%$
b. 30%
c. 35%
d. 40%
e. 45%
f. $\geq 50 \%$

The decision tree below includes Sue's decision as to whether or not to hire the consultant. Insert the probability that you computed in (7) above, together with its complement $\mathrm{P}\{\mathrm{L} \subseteq \mathrm{PW}\}$.

Note that in this tree, the cost of the consultant is not included in the "payoffs" at the ends of the tree, but is included only when comparing the payoffs at nodes $2 \& 4$.
8. "Fold back" nodes 2 through 8, and write the value of each node below:

Node	Value	Node	Value	Node	Value
8		5	150	2	60
7	60	4		1	-
6	150	3	50		

9. Should Sue hire the consultant? Circle: Yes No
\qquad 10. The expected value of the consultant's opinion is (in thousands of \$) (Choose nearest value):
a. ≤ 12.5
b. 15
c. 17.5
d. 20
e. 22.5
f. 25
g. 27.5
h. ≥ 30
\qquad

56:171 Operations Research
 Quiz \#6 - October 22, 1999

Part A. The Cubs are trying to determine which of the following free agent pitchers should be signed: Rick Sutcliffe (RS), Bruce Sutter (BS), Dennis Eckersley (DE), Steve Trout (ST), Tim Stoddard (TS). The cost of signing each pitcher and the number of victories each pitcher will add to the Cubs are shown below.

Pitcher	Cost of signing (\$million)	Right- or Left- handed?	Victories added to Cubs
RS	$\$ 6$	Right	6
BS	$\$ 4$	Right	5
DE	$\$ 3$	Left	3
ST	$\$ 2$	Left	3
TS	$\$ 2$	Right	2

Define binary decision variables RS, BS, etc., e.g.,
RS $=1$ if Rick Sutcliffe is signed, and 0 otherwise.
From the list below, select the linear inequality which imposes each of the following restrictions:

- 1. If RS is signed, then TS cannot be signed.
_ 2. At most two right-handed pitchers can be signed.
_ 3. If DE is signed, then ST must be signed.
__ 4. At least one left-handed pitcher must be signed.
__ 5. The Cubs cannot sign both RS and BS.
a. $\mathrm{ST} \geq \mathrm{DE}$
b. $\mathrm{DE}+\mathrm{ST} \leq 1$
c. $\mathrm{RS}+\mathrm{BS}+\mathrm{TS} \geq 2$
d. $\mathrm{RS}+\mathrm{BS}+\mathrm{TS} \leq 2$
e. $\mathrm{RS}+\mathrm{BS}+\mathrm{TS} \geq 1$
f. $\mathrm{RS}+\mathrm{BS}=1$
g. $\mathrm{RS}+\mathrm{BS}=0$
h. $\mathrm{ST} \leq \mathrm{DE}$
i. $\mathrm{RS}+\mathrm{BS} \leq 1$
j. $R S+B S \geq 1$
k. $\mathrm{ST}+\mathrm{DE}=1$

1. $\mathrm{RS} \leq \mathrm{TS}$
m. $\mathrm{DE}+\mathrm{ST} \geq 1$
n. $\mathrm{RS}+\mathrm{TS} \leq 1$
o. $\mathrm{DE}+\mathrm{ST} \leq 1$
p. $\mathrm{RS}+\mathrm{TS}=1$
q. None of the above
\qquad

Part B. A court decision has stated that the enrollment of each high school in Metropolis must be at least are shown in the table below.

	White students		Total
1	80	30	110
2	70	5	75
3	90	10	100
4	50	40	90
5	60	30	90

The distance (in miles) that a student in each district must travel to each high school is:

District	HS \#1	HS \#2
1	1	2
2	0.5	1.7
3	0.8	0.8
4	1.3	0.4
5	1.5	0.6

School board policy requires that all the students in a given district must attend the same school.
Define the decision variables:

$$
\begin{aligned}
\mathrm{X}_{\mathrm{ij}} & =1 \text { if all students in district } i \text { are assigned to school } j \\
& =0 \text { otherwise }
\end{aligned}
$$

For each of the following restrictions, select the corresponding linear constraint from the list below:
\qquad 6. Students in district 1 must be assigned to a school.
\qquad 7. The enrollment of school 1 must be at least 150 .
_ 8. The enrollment of black students in school 1 must be at least 20% of its total enrollment.
_ 9. Districts 2 and 5 cannot be assigned to the same school.

- 10. At least three districts must be assigned to school \#1.
a. $110 X_{11}+75 X_{21}+100 X_{31}+90 X_{41}+90 X_{51} \geq 150$
b. $110 \mathrm{X}_{11}+75 \mathrm{X}_{21}+100 \mathrm{X}_{31}+90 \mathrm{X}_{41}+90 \mathrm{X}_{51} \leq 150$
c. $X_{11}+X_{21}+X_{31}+X_{41}+X_{51}=3$
d. $\mathrm{X}_{11}+\mathrm{X}_{12} \leq 1$
e. $X_{11}+X_{12}=1$
f. $X_{11}+X_{12} \geq 1$
g. $X_{21}+X_{51}=1 \& X_{22}+X_{52}=1$
h. $X_{21} \leq X_{51} \quad \& X_{22} \leq X_{52}$
i. $X_{11}+X_{21}+X_{31}+X_{41}+X_{51} \geq 3$
j. $30 X_{11}+5 X_{21}+10 X_{31}+40 X_{41}+30 X_{51} \geq 20$
k. $X_{21} \times X_{51}=1$

1. $\mathrm{X}_{11}+\mathrm{X}_{12} \geq 1$
m. $X_{11}+X_{12}=1$
n. $X_{11}+X_{21}=1$
o. $X_{21}+X_{51} \geq 1 \& X_{22}+X_{52} \geq 1$
p. $30 \mathrm{X}_{11}+5 \mathrm{X}_{21}+10 \mathrm{X}_{31}+40 \mathrm{X}_{41}+30 \mathrm{X}_{51} \geq 0.2\left(110 \mathrm{X}_{11}+75 \mathrm{X}_{21}+100 \mathrm{X}_{31}+90 \mathrm{X}_{41}+90 \mathrm{X}_{51}\right)$
q. $110 X_{11}+75 X_{21}+100 X_{31}+90 X_{41}+90 X_{51} \geq 0.2\left(30 X_{11}+5 X_{21}+10 X_{31}+40 X_{41}+30 X_{51}\right)$
r. $30 \mathrm{X}_{11}+5 \mathrm{X}_{21}+10 \mathrm{X}_{31}+40 \mathrm{X}_{41}+30 \mathrm{X}_{51} \geq 30$
s. None of the above
\qquad

56:171 Operations Research
 Quiz \#7 - Fall 1999

Discrete-time Markov chains Let X_{n} denote the quality of the $n{ }^{\text {th }}$ item produced by a production system, with $\mathrm{X}_{\mathrm{n}}=1$ meaning "good" and $\mathrm{X}_{\mathrm{n}}=2$ meaning "defective". Suppose that $\left\{\mathrm{X}_{\mathrm{n}}\right.$: $\mathrm{n}=0,1,2, \ldots\}$ is a Markov chain whose transition probability matrix P (and P^{2} and P^{3}) are

$$
\mathrm{P}=\left[\begin{array}{ll}
.98 & .02 \\
.15 & .85
\end{array}\right], \mathrm{P}^{2}=\left[\begin{array}{ll}
.963 & .037 \\
.275 & .725
\end{array}\right], \mathrm{P}^{3}=\left[\begin{array}{cc}
.95 & .05 \\
.378 & .622
\end{array}\right]
$$

That is, if the previous item was "good", the probability of producing a defective item is 2%, but if the previous item was defective, there is an 85% probability that the next item will also be defective.

1. Sketch the diagram showing the states and transitions (with transition probabilities):

2. What's the probability that, if the $1^{\text {st }}$ item is good, the next one (i.e., the $2^{\text {nd }}$) is defective?
3. What is the probability that, if the first item is defective, the second is defective? \qquad
4. What is the probability that, if the first two items are defective, the third is defective? \qquad
5. What is the probability that, if the first item is good, the third is defective? \qquad
6. What is the probability that, if the first item is defective, the third is also defective? \qquad
7. Write the transition probability matrix for the following Markov chain diagram:

(Note: some probabilities have not been specified in the diagram, but may be determined by the probabilities which are specified.)

$$
\mathbf{P}=\left[\begin{array}{l|l|l|l}
& & & \\
\hline & & & \\
\hline & & & \\
\hline & & &
\end{array}\right]
$$

\qquad

56:171 Operations Research
 Quiz \#8 - Fall 1999

Discrete-time Markov chains On December 31 of each year I determine whether my car is in good, fair, or brokendown condition. If my car is broken-down, I replace it with a good used car.

- A good car will be good at the end of next year with probability 80%, fair with probability 15%, or broken-down with probability 5%.
- A fair car will be fair at the end of the next year with probability 50%, or broken-down with probability 50%.
- It costs $\$ 10,000$ to purchase a good used car; a fair car can be traded in for $\$ 3000$; and a broken-down car can be sold as junk for $\$ 500$.
- It costs $\$ 1000$ per year to operate a good car and $\$ 1500$ to operate a fair car.

Assume that the cost of operating a car during a year depends on the type of car on hand at the beginning of the year, and that any break-down occurs only at the end of a year.

My policy is to drive my car until it breaks down, at which time I replace it with a good used car. Define a Markov chain model representing the condition of the car which I own on Dec. 31, with three states:

1. Good condition
2. Fair condition
3. Broken-down

On the diagram to the right, indicate the transition probabilities.
Complete the transition probability matrix below

Which one or more equations must be satisfied by the steadystate probabilities $\pi_{1}, \pi_{2}, \& \pi_{3}$?
a. $\pi_{1}+\pi_{2}+\pi_{3}=1$
b. $\pi_{1}+\pi_{2}+\pi_{3}=0$
c. $0.8 \pi_{1}+0.8 \pi_{3}=\pi_{1}$
d. $0.8 \pi_{1}+0.15 \pi_{2}+0.05 \pi_{3}=\pi_{1}$
e. $0.8 \pi_{1}+0.15 \pi_{2}+0.05 \pi_{3}=\pi_{3}$
f. $0.05 \pi_{1}+0.5 \pi_{2}+0.05 \pi_{3}=\pi_{3}$
g. $0.8 \pi_{1}+0.8 \pi_{3}=0$
h. $0.8 \pi_{1}+0.15 \pi_{2}+0.05 \pi_{3}=0$

Write the expression which represents my average cost per year:
\qquad $\pi_{1}+$ \qquad $\pi_{2}+$ \qquad π_{3}

The matrix of mean first passage times is

I should expect to replace my car once every \qquad years.

If my current car is in fair condition, I should expect to replace it in \qquad years.
\qquad

56:171 Operations Research
 Quiz \#9 - Fall 1999

A. Manufacturing System with Inspection \& Rework: Consider a system in which there are three machining operations, each followed by an inspection. Relevant data are:

OPERATION	TIME RQMT. (man-hrs)	OPERATING COST (\$/hr.)	SCRAP RATE $\%$	\%SENT BACK FOR REWORK
Machine A	1.5	20.00	15	
Inspection A	0.25	8.00	4	8
Machine B	1.0	16.00	6	
Inspection B	0.25	8.00	5	4
Machine C	1.5	20.00	5	
Inspection C	. 5	8.00	9	7
Pack \& Ship	0.25	8.00		

The raw materials (blanks) cost $\$ 75.00$ per part, and scrap value recovered is $\$ 10.00$ per part. An order for 10 completed parts must be filled.
Consult the computer output below to answer the questions:
_ 1. What percent of the parts which are started are successfully completed? Choose nearest value.
a. 50%
b. 55\%
c. 60%
d. 65%
e. 70\%
f. 75%
g. 80%
h. 85%
_ 2. What is the expected number of blanks which are required to fill the order for 10 parts? Choose nearest value
a. 11
b. 12
c. 13
d. 14
e. 15
f. 16
g. 17
h. 18
__ 3. What is the probability that a part which passes inspection B will ultimately be scrapped? Choose nearest value.
a. 5%
b. 10%
c. 15%
d. 20%
e. 25%
f. 30\%
g. 35%
h. 40%
__ 4. What is the expected number of times that a part is inspected? Choose nearest value
a. 1
b. 1.5
c. 2
d. 2.5
e. 3
f. 3.5
g. 4
h. 4.5
__ 5. If a part reaches Machine C , what is the probability that it will be successfully completed? Choose nearest value
a. 60%
b. 65%
c. 70%
d. 75%
e. 80%
f. 85%
g. 90%
h. 95%

$$
\begin{aligned}
& \quad \begin{array}{l}
\text { A }=\text { Absorption Probabilities } \\
\text { from } \\
7 \\
7
\end{array}
\end{aligned}
$$

\qquad

1	0.62861	0.37139
2	0.739541	0.260459
3	0.783241	0.216759
4	0.833235	0.166765
5	0.872608	0.127392
6	0.918535	0.0814653

from	$E=$ Expected No. Visits to Transient States					
	1	2	3	4	5	6
1	1.07296	0.912017	0.842156	0.791627	0.787732	0.748345
2	0.0858369	1.07296	0.990772	0.931326	0.926743	0.880406
3	0	0	1.04932	0.986359	0.981505	0.93243
4	0	0	0.0524659	1.04932	1.04415	0.991947
5	0	0	0	0	1.09349	1.03882
6	0	0	0	0	0.0984144	1.09349

B. Continuous-time Markov Chains. Consider the vehicle replacement problem:

I own one car. At any time, my current car is in good, fair, or broken-down condition. My policy is to drive my car until it breaks down, at which time I replace it. I have modeled the process as a continuous-time Markov chain, with the transition diagram below. (Transition rates are shown.) It costs me $\$ 9000$ to purchase a good car; a broken-down car has no trade-in. It costs me $\$ 1000 / \mathrm{yr}$ to operate a good car and $\$ 1500 / \mathrm{yr}$ to operate a fair car.

1. What is the value of the matrix L of transition rates?

$$
\Lambda=\left[\begin{array}{l}
\overline{=} \bar{Z}
\end{array}\right]
$$

2. The probability distribution of the length of time between purchase of a car and when it has deteriorated to a "fair" car is
a. Uniform
b. Normal
c. Exponential
d. Markov
e. Gamma
f. None of the above

3. Suppose that I have just purchased a car. What is the probability that this (good) car will change its state within the next year?
a. $1-\mathrm{e}^{0.25}$
b. $1-\mathrm{e}^{-0.25}$
c. $\mathrm{e}^{0.25}$
d. $\mathrm{e}^{-0.25}$
e. None of the above
4. Suppose that I purchased my current car one year ago. Then the probability that one year from now my car will not have deteriorated into a "fair" car is
a. $1-\mathrm{e}^{0.25}$
b. $1-\mathrm{e}^{-0.25}$
c. $1-\mathrm{e}^{0.5}$
d. $1-\mathrm{e}^{-0.5}$
e. $e^{0.25}$
f. $\mathrm{e}^{-0.25}$
g. $\mathrm{e}^{0.5}$
h. $\mathrm{e}^{-0.5}$
i.. None of the above
\qquad 5. Which (one or more) of the following equations describe the steadystate probability distribution?
a. $\pi_{1}+\pi_{2}+\pi_{3}=0$
b. $\pi_{1}=0.15 \pi_{2}+0.1 \pi_{3}$
c. $0.15 \pi_{1}=0.7 \pi_{2}$
d. $\pi_{1}+\pi_{2}+\pi_{3}=1$
e. $\pi_{1}=0.15 \pi_{1}+0.7 \pi_{2}+50 \pi_{3}$
f. $0.25 \pi_{1}=0.7 \pi_{2}+50 \pi_{3}$
g. $0.15 \pi_{1}=0.7 \pi_{2}+0.1 \pi_{3}$
h. $0.25 \pi_{1}=50 \pi_{3}$
i. $\quad 0.15 \pi_{1}=50 \pi_{3}$
5. Suppose that the steadystate probabilities are $\pi=(0.8,0.195,0.005)$. (Not the actual values!) Then the expected time T between replacements, measured in years, is (choose nearest value):
a. 1
b. 1.5
c. 2
d. 2.5
e. 3
f. 3.5
g. 4
h. 4.5
i. 5
\qquad

56:171 Operations Research Quiz \#10 - Fall 1999

For each diagram of a Markov model of a queue in (1) through (5) below, indicate the correct Kendall's classification from among the following choices :
(a) $\mathrm{M} / \mathrm{M} / 1$
(b) $\mathrm{M} / \mathrm{M} / 2$
(c) $\mathrm{M} / \mathrm{M} / 1 / 4$
(d) $\mathrm{M} / \mathrm{M} / 4$
(e) $\mathrm{M} / \mathrm{M} / 2 / 4$
(f) $\mathrm{M} / \mathrm{M} / 2 / 4 / 4$
(g) $\mathrm{M} / \mathrm{M} / 1 / 4 / 4$
(h) $\mathrm{M} / \mathrm{M} / 4 / 2$
(i) $M / M / 4 / 4$
(j) $\mathrm{M} / \mathrm{M} / 2 / 2 / 4$
(k) $\mathrm{M} / \mathrm{M} / 1 / 4 / 2$
(1) none of the above
\qquad 1.

\qquad

\qquad
.
\qquad 4.

\qquad

.

Note: Kendall's notation:

\qquad

A machine operator has the task of keeping three machines running. Each machine runs for an average of 1 hour before it becomes jammed or otherwise needs the operator's attention. He then spends an average of twelve minutes restoring the machine to running condition. Define a continuous-time Markov chain, the state of the system being the number of machines not running.
6. True or False (circle): This Markov chain is a birth/death process.
7. Specify the letter for each of the transition rates:
λ_{0} \qquad
μ_{1} \qquad
λ_{1} \qquad
λ_{2} \qquad
μ_{2} \qquad H3 \qquad

a. $1 / \mathrm{hr}$
b. $2 / \mathrm{hr}$
c. $3 / \mathrm{hr}$
d. $4 / \mathrm{hr}$.
e. $5 / \mathrm{hr}$.
f. $0.2 / \mathrm{hr}$
g. $0.4 / \mathrm{hr}$
h. $0.5 / \mathrm{hr}$.
i. None of the above
8. Which equation is used to compute the steady-state probability π_{0} ?
(a.) $\frac{1}{\pi_{0}}=1+\frac{\lambda_{0}}{\mu_{1}}+\frac{\lambda_{1}}{\mu_{2}}+\frac{\lambda_{2}}{\mu_{3}}$
(e.) $\frac{1}{\pi_{0}}=1+\frac{\lambda_{0}}{\mu_{1}}+\frac{\lambda_{0}}{\mu_{1}} \frac{\lambda_{1}}{\mu_{2}}+\frac{\lambda_{0}}{\mu_{1}} \frac{\lambda_{1}}{\mu_{2}} \frac{\lambda_{2}}{\mu_{3}}$
(b.) $\pi_{0}=1+\frac{\lambda_{0}}{\mu_{1}}+\frac{\lambda_{0}}{\mu_{1}} \frac{\lambda_{1}}{\mu_{2}}+\frac{\lambda_{0}}{\mu_{1}} \frac{\lambda_{1}}{\mu_{2}} \frac{\lambda_{2}}{\mu_{3}}$
(f.) $\pi_{0}=1+\frac{\lambda_{0}}{\mu_{1}}+\frac{\lambda_{1}}{\mu_{2}}+\frac{\lambda_{2}}{\mu_{3}}$
(c.) $\pi_{0}=1 \times \frac{\lambda_{0}}{\mu_{1}} \times \frac{\lambda_{1}}{\mu_{2}} \times \frac{\lambda_{2}}{\mu_{3}}$
(g.) $\frac{1}{\pi_{0}}=1 \times \frac{\lambda_{0}}{\mu_{1}} \times \frac{\lambda_{1}}{\mu_{2}} \times \frac{\lambda_{2}}{\mu_{3}}$
(d.) $\pi_{0}=\frac{\lambda_{0}}{\mu_{1}} \times \frac{\lambda_{1}}{\mu_{2}} \times \frac{\lambda_{2}}{\mu_{3}}$
(h) None of the above
9. What is the relationship between π_{0} and π_{1} for this system?
a. $\pi_{1}=\pi_{0}$
b. $\pi_{1}=0.1 \pi_{0}$
c. $\pi_{1}=0.6 \pi_{0}$
d. $\pi_{1}=1 / 6 \times \pi_{0}$
e. $\pi_{1}=3 \pi_{0}$
f. None of the above
10. If the average number of machines not running were 0.5 and the average time between machine jams were 0.4 hr , what is the average turnaround time (waiting plus service time) to restore a machine to running condition? (Choose nearest answer)
a. 0.1 hour
b. 0.4 hour
c. 0.2 hour
d. 0.5 hour
e. 0.3 hour
f. 0.6 hour

56:171 Operations Research
 Quiz \#11 - Fall 1999

Part I: Suppose that a new car costs $\$ 10,000$ and that the annual operating cost $\&$ trade-in value are as follows

Age of car (years)	Trade-in value	Operating cost in previous year
1	$\$ 7000$	$\$ 300$
2	$\$ 6000$	$\$ 500$
3	$\$ 4000$	$\$ 800$
4	$\$ 3000$	$\$ 1200$
5	$\$ 2000$	$\$ 1600$
6 or more	$\$ 1000$	$\$ 2200$

I wish to determine the replacement policy that, starting with a new car, minimizes my net cost of owning and operating a car for the next ten years (from $t=0$ until $t=10$)? (Do not include the cost of the initial car.)

As in the class notes, define:
$\mathrm{G}(\mathrm{t})=$ minimum total cost incurred from time t until the end of the planning period, if a new car has just been purchased. (Note: this does not include the cost of purchasing this initial new car.)
$\mathrm{X}^{*}(\mathrm{t})=$ optimal replacement time for a car which has been purchased at the beginning of period t .
The optimal value function $G(t)$ is defined recursively by

$$
G(t)=\operatorname{minimum}_{t+1 \leq x \leq T}\left\{\sum_{i=1}^{x-t} C_{i}-S_{x-t}+P_{x}+G(x)\right\}
$$

where
$\mathrm{G}(10)=0$
$P_{t}=$ purchase price of a new car at time t
$\mathrm{C}_{\mathrm{i}}=$ cost of operation \& maintenance of a car in its $\mathrm{i}^{\text {th }}$ year.
$S_{j}=$ trade-in value of a car of age j
The computation of $G(4)$ through $G(10)$, i.e., for the final 6 years, has already been done in the example presented in class, and is illustrated below:

1. What is the value of $G(5)$? $\$$ \qquad
2. If I purchase a new car at the beginning of year 4, how many additional cars should I purchase until the end of the planning period? \qquad
3. If I purchase a new car at the beginning of year 4, what is my average cost/year until the end of the planning period? \$ \qquad year

Part II. Optimal Reliability by means of redundancy. A system consists of three components, each of which is necessary for the operation of the system. The weight and the reliability of each component, i.e., the probability that the component survives for the system's intended lifetime, is shown in the table below:

Component	Weight (kg)	Reliability (\%)
1	1	70
2	2	80
3	1	75

The total weight of the system is to be no more than 7 kg . We will use dynamic programming to determine how many redundant units of each component should be included in order to maximize the reliability of the system.
The stages correspond to the three types of components. We will perform a backward recursion, in which we imagine that we are deciding first how many units of type 3 are to be included, then type 2 , and finally type 1. The state \boldsymbol{s} of the system at stage \boldsymbol{n} is the number of kg remaining to be filled with components n , $\mathrm{n}-1, \ldots 1$, and the optimal value $\boldsymbol{V}_{\boldsymbol{n}}(\boldsymbol{s})$ is the maximum reliability that can be attained for the subsystem consisting of components of type $\mathrm{n}, \mathrm{n}-1, \ldots 1$ if skg are available. The computations are done first for stage 1 , then stage 2 , and finally stage 3 .

```
Optimal System Reliability Using Redundancy
```

Recursion type: backward

s \ x :		$\begin{array}{cc} -- \text { Stage } & 1--- \\ 2 & 3 \end{array}$	
1	0.7000	$-\infty$	$-\infty$
2	0.7000	0.9100	$-\infty$
3	0.7000	0.9100	0.9730
4	0.7000	0.9100	0.9730
5	0.7000	0.9100	0.9730
6	0.7000	0.9100	0.9730
7	0.7000	0.9100	0.9730
State	Optimal	Optimal	Resulting
S	Values $\mathrm{V}_{1}(\mathrm{~s})$	Decisions	s State
1	0.7000	1	0
2	0.9100	2	0
3	0.9730	3	0
4	0.9730	3	1
5	0.9730	3	2
6	0.9730	3	3
7	0.9730	3	4

$s \backslash x: 1$			---Stage 2---	
	3	0.5600	$-\infty \quad-\infty$	
	4	0.7280	$-\infty \quad-\infty$	
	5	0.7784	$0.6720 \quad-\infty$	
	6	0.7784	$0.8736 \quad-\infty$	
	7	0.7784	0.93410 .69	
State		Optimal	Optimal	Resulting
S		Values $\mathrm{V}_{2}(\mathrm{~s})$	Decisions	State
3		0.5600	1	1
4		0.7280	1	2
5		0.7784	1	3
6		0.8736	2	2
7		0.9341	2	3

---Stage 3---

4	0.4200	$-\infty$	$-\infty$
5	0.5460	0.5250	$-\infty$
6	0.5838	0.6825	0.5512
7	??????	0.7298	0.7166

State Optimal Optimal Resulting

s	Values $\mathrm{V}_{3}(\mathrm{~s})$	Decisions	State
4	0.4200	1	3

4	0.4200	1	3

5	0.5460	1	4
6	0.6825	2	4

7	0.7298	2	5

4. What is the reliability of a subsystem consisting of 2 units of component \#1?
a. 0.7^{2}
b. 0.3^{2}
c. $1-0.7^{2}$
d. 2×0.7
e. $1-0.3^{2}$
f. None of the above
5. What is the missing value in the table at stage 3 ? \qquad \%
6. What is the maximum reliability that can be obtained using redundant units with a weight restriction of 7 kg .?
7. If only six kg were available, the maximum reliability that could be achieved is \qquad \%
8. If only six kg. were available, the optimal design would include:
\qquad units of component \#1
\qquad units of component \#2
\qquad units of component \#3
\qquad

56:171 Operations Research
 Quiz \#12 - December 8, 1999

Part I: Production Planning We wish to plan production of an expensive, low-demand item for the next three months (January, February, \& March).

- the cost of production is $\$ 10$ for setup, plus $\$ 5$ per unit produced, up to a maximum of 4 units.
- the storage cost for inventory is $\$ 2$ per unit, based upon the level at the beginning of the month.
- a maximum of 3 units may be kept in inventory at the end of each month; any excess inventory is simply discarded.
- the demand D is random, with the same probability distribution each month:

demand d	0	1	2
$\mathrm{P}\{\mathrm{D}=\mathrm{d}\}$	0.2	0.5	0.3

- there is a penalty of $\$ 25$ per unit for any demand which cannot be satisfied. Backorders are not allowed.
- the initial inventory (i.e., the inventory at the end of December) is 1 .
- a salvage value of $\$ 4$ per unit is received for any inventory remaining at the end of the last month (March)
Consult the computer output which follows to answer the following questions: Note that in the computer output, stage $3=$ January, stage $\mathbf{2}=$ February, etc. (i.e., $n=\#$ months remaining in planning period.)
a. What is the optimal production quantity for January?
b. What is the total expected cost for the three months?
c. If, during January, the demand is 1 unit, what should be produced in February? \qquad
d. Three values have been blanked out in the computer output, What are they?
i. the optimal value $f_{2}(1)$ \qquad
ii. the optimal decision $\mathrm{x}_{2}{ }^{*}(1)$ \qquad
iii. the cost associated with the decision to produce 1 unit in February when the inventory is 0 at the end of January.

$\begin{array}{llll} --- \text { Stage } & 1--- & & \\ 1 & 2 & 3 & 4 \end{array}$					
0	27.5000	21.7000	16.4000	17.4000	19.2000
1	8.7000	13.4000	14.4000	16.2000	20.0000
2	0.4000	11.4000	13.2000	17.0000	22.0000
3	${ }^{-1.6000}$	10.2000	14.0000	19.0000	24.0000
	Optimal	Optimal			
State	Values	Decision			
0	16.4000	2			
1	8.7000	0			
2	0.4000	0			
3	${ }^{-1.6000}$	0			
		St	age 2---		
	: 0	1	2	3	4
0	43.9000	?????? ${ }^{\text {a }}$	29.3500	27.4900	29.0000
1	24.3600	26.3500	24.4900	26.0000	30.4000
2	13.3500	21.4900	23.0000	27.4000	32.4000
3	8.4900	20.0000	24.4000	29.4000	34.4000

\qquad

State	Optimal Values	Optimal Decision			
0	27.4900	3			
1	?? ? ? ? ?	?			
2	13.3500	0			
3	8.4900	0			
		---St	ge 3---		
S \backslash	x: 0	1	2	3	4
0	54.9900	49.3640	43.0970	40.6810	39.9480
1	36.3640	40.0970	37.6810	36.9480	40.4900
2	27.0970	34.6810	33.9480	37.4900	42.4900
3	21.6810	30.9480	34.4900	39.4900	44.4900
	Optimal	Optimal			
State	Values	Decision			
0	39.9480	4			
1	36.3640	0			
2	27.0970	0			
3	21.6810	0			

Part II. Markov chains The Green Valley Christmas Tree Farm owns a plot of land with 5000 evergreen trees. Each year they allow individuals to select and cut Christmas trees. However, they protect small trees (usually less than 4 feet tall) so that they will grow and be available for sale in future years. Currently 2000 trees are classified as protected trees, while the remaining 3000 are available for cutting. However, even though a tree is available for cutting in a given year, it possibly might not be selected for cutting until future years. While most trees not cut in a given year live until the next year (protected or unprotected), approximately 15% are lost to disease. Each year, approximately 50% of the unprotected trees are cut, and 40% of the protected trees surviving from the previous year have matured sufficiently to be made available for cutting.

Define a Markov chain model of the system consisting of a single tree, with states (1) protected, (2) unprotected, (3) dead, (4) cut \& sold. The transition probability matrix is

$$
\mathrm{P}=\left[\begin{array}{llll}
0.51 & 0.34 & 0.15 & 0 \\
0 & 0.425 & 0.075 & 0.5 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

The following computations were performed:

$$
\begin{aligned}
& {\left[\begin{array}{ll}
0.49 & -0.34 \\
0 & 0.575
\end{array}\right]^{-1}=\left[\begin{array}{cc}
2.0408 & 1.2067 \\
0 & 1.7391
\end{array}\right]} \\
& {\left[\begin{array}{cc}
2.0408 & 1.2067 \\
0 & 1.7391
\end{array}\right]\left[\begin{array}{ll}
0.15 & 0 \\
0.075 & 0.5
\end{array}\right]=\left[\begin{array}{ll}
0.3966 & 0.6034 \\
0.1304 & 0.8696
\end{array}\right]}
\end{aligned}
$$

1. What are the absorbing states of this model?
2. What is the probability that a tree which is protected is eventually sold? \qquad
3. What is the probability that a protected tree eventually dies of disease? \qquad
4. How many of the farm's 5000 trees are expected to be sold eventually
5. If a tree is initially protected, what is the expected number of years until it is either sold or dies? \qquad

[^0]: © D.L.Bricker
 Dept of Mechanical \& Industrial Engineering
 University of Iowa

