56:171
 Operations Research Fall 2001

Homework Solutions

© D.L.Bricker
Dept of Mechanical \& Industrial Engineering University of Iowa

56:171 Operations Research
 Homework \#1 Solution - Fall 2001

1. A company makes two products in a single plant. It runs this plant for 100 hours each week. Each unit of product A that the company produces consumes two hours of plant capacity, earns the company a profit of $\$ 1000$, and causes, as an undesirable side effect, the emission of 4 ounces of particulates. Each unit of product B that the company produces consumes one hour of capacity, earns the company a profit of $\$ 2000$, and causes the emission of 3 ounces of particulates and 1 ounce of chemicals. The EPA (environmental Protection Agency) requires the company to limit particulate emission to at most 240 ounces per week and chemical emission to at most 60 ounces per week.
a. Write down the linear programming model for maximizing the company's profits subject to the restrictions on production capacity and emissions.

Solution:

Decision variables:
A = \# units of product A that the company produces per week
B = \# units of product B that the company produces per week

Objective Function:

Max 1000 A +2000 B (profit $\$ /$ week)
Constraints:

- Restrictions on production

$$
2 \mathrm{~A}+\mathrm{B} \leq 100
$$

- Restrictions on emission

$$
\begin{array}{r}
4 \mathrm{~A}+3 \mathrm{~B} \leq 240 \\
\mathrm{~B} \leq 60
\end{array}
$$

- Nonnegativity constraint on each of the two variables.

$$
\mathrm{A} \geq 0, \mathrm{~B} \geq 0
$$

b. What is the optimal solution of the LP?

Solution: (from LINDO)
OBJECTIVE FUNCTION VALUE

1) 135000.0

VARIABLE
REDUCED COST A $\quad 15.000000 \quad 0.000000$ $\begin{array}{lll}\text { B } \quad 60.000000 & 0.000000\end{array}$
ROW SLACK OR SURPLUS DUAL PRICES
2) 10.0000000 .000000
3) $0.000000 \quad 250.000000$
4) $0.000000 \quad 1250.000000$

NO. ITERATIONS= 2
The optimal plan is to produce each week 15 units of product A and 60 units of product B , which earns the company a profit of $\$ 135,000 /$ week.
2. Cattle feed can be mixed from oats, corn, alfalfa, and peanut hulls. The following table shows the current cost per ton (in dollars) of each of these ingredients, together with the percentage of recommended daily allowances for protein, fat, and fiber that a serving of it fulfills.

	Oats	Corn	Alfalfa	Peanut hulls
\% protein	60	80	55	40
\% fat	50	70	40	100
\% fiber	90	30	60	80
Cost \$/ton	200	150	100	75

We want to find a minimum cost way to produce feed that satisfies at least 60% of the daily allowance for protein and fiber while not exceeding 60% of the fat allowance.

Solution:

Decision variables:
Define the variables OATS, CORN, ALFALFA, and HULLS to be the quantity (in tons) mixed to obtain a ton of cattle feed.

Complete LP Formulation:

```
MIN Z = 200 OATS + 150 CORN + 100 ALFALFA + 75 HULLS
SUBJECT TO
    60 OATS + 80 CORN + 55 ALFALFA + 40 HULLS >= 60
    50 OATS + 70 CORN + 40 ALFALFA + 100 HULLS <= 60
    90 OATS + 30 CORN + 60 ALFALFA + 80 HULLS >= 60
    OATS + CORN + ALFALFA + HULLS = 1
    OATS >= 0, CORN >= 0, ALFALFA >= 0, HULLS >= 0
```

Solution from LINDO :

```
LP OPTIMUM FOUND AT STEP 4
OBJECTIVE FUNCTION VALUE
```

1) $\quad 125.0000$

VARIABLE	VALUE	REDUCED COST
OATS	0.157143	0.000000
CORN	0.271429	0.000000
ALFALFA	0.400000	0.000000
HULLS	0.171429	0.000000

ROW	SLACK OR SURPLUS	DUAL PRICES
2)	0.000000	-5.000000
3)	0.000000	0.000000
4)	0.000000	-2.500000
5)	0.000000	325.000000

NO. ITERATIONS=
4

The optimal solution is to mix 0.16 tons of oats, 0.27 tons of corns, 0.4 tons of alfalfa, and 0.17 tons of peanut hulls to obtain a ton of feed. The cost of a ton of feed is $\$ 125$.
3. "Mama's Kitchen" serves from 5:30 a.m. each morning until 1:30 p.m. in the afternoon. Tables are set and cleared by busers working 4-hour shifts beginning on the hour from 5:00 a.m. through 10:00 a.m. Most are college students who hate to get up in the morning, so Mama's pays $\$ 9$ per hour for the 5:00, 6:00, and 7:00 a.m. shifts, and $\$ 7.50$ per hour for the others. (That is, a person works a shift consisting of 4 consecutive hours, with the wages equal to $4 \times \$ 9$ for the three early shifts, and $4 \times \$ 7.50$ for the 3 later shifts.) The manager seeks a minimum cost staffing plan that will have at least the number of busers on duty each hour as specified below:

	5 am	6 am	7 am	8 am	9 am	10 am	11 am	Noon	1 pm
\#reqd	2	3	5	5	3	2	4	6	3

Solution:
Decision variables:
$\mathrm{Xi}=$ the $\#$ of employees who start to work on $\mathrm{i}^{\text {th }}$ shift. $(\mathrm{i}=1,2, \ldots, 6)$

```
LP Formulation:
    MIN 36 X1 + 36 X2 + 36 X3 + 30 X4 + 30 X5 + 30 X6
    SUBJECT TO
        X1 >= 2 (Restriction of # of busers on duty at 5am)
        X1 + X2 >= 3 (Restriction of # of busers on duty at 6am)
        X1 + X2 + X3 >= 5 (Restriction of # of busers on duty at 7am)
    X1 + X2 + X3 + X4 >= 5 (Restriction of # of busers on duty at 8am)
            X2 + X3 + X4 + X5 >= 3 (Restriction of # of busers on duty at 9am)
                X3 + X4 + X5 + X6 >= 2 (Restriction of # of busers on duty at 10am)
                X4 + X5 + X6 >= 4 (Restriction of # of busers on duty at 1lam)
                    X5 + X6 >= 6 (Restriction of # of busers on duty at 12pm)
                                X6 >= 3 (Restriction of # of busers on duty at lpm)
    Xi >= 0 (for i = 1,2,3,4,5,6) (Sign restrictions)
```

Solution from LINDO :
LP OPTIMUM FOUND AT STEP 9

OBJECTIVE FUNCTION VALUE		
1)	360.0000	
VARIABLE	VALUE	REDUCED COST
X1	3.000000	0.000000
X3	2.000000	0.000000
X5	3.000000	0.000000
X6	3.000000	0.000000
ROW	SLACK OR SURPLUS	DUAL PRICES
2)	1.000000	0.000000
3)	0.000000	0.000000
$4)$	0.000000	-6.000000
5)	0.000000	-30.000000
6)	2.000000	0.000000
$7)$	6.000000	0.000000
$8)$	2.000000	0.000000

$9)$	0.000000	-30.000000
$10)$	0.000000	0.000000

That is, the optimal staffing plan is to employ
3 busers for the $1^{\text {st }}$ shift(4-hour shifts begins at 5:00a.m.),
2 busers for the $3^{\text {rd }} \operatorname{shift}(4$-hour shifts begins at 7:00a.m.),
3 busers for the $5^{\text {th }} \operatorname{shift}(4$-hour shifts begins at 9:00a.m.), and
3 busers for the $6^{\text {th }} \operatorname{shift}(4-$ hour shifts begins at 10:00a.m.).
Note that the solution of the LP (with continuous variables) is actually integer-valued!
4. a. Draw the feasible region of the following LP:

b. Use the simplex algorithm to find the optimal solution of the above LP. (Show the initial and each succeeding tableau.)

Solution: After adding slack variables X3, X4, and X5 to the three constraints, we obtain the initial tableau as follows :

Basis	- Z	X1	X2	X3	X4	X5	RHS
	1	3	2	0	0	0	0
X3	0	4	7	1	0	0	28
X4	0	1	1	0	1	0	6
X5	0	3	1	0	0	1	9

Either X1 or X2 might be selected to enter the basis - both have positive relative profits in row 0 . Because it has the larger relative profit, we here enter X 1 into the basis. The minimum ratio test
(i.e., $\operatorname{Min}\left\{\frac{28}{4}, \frac{6}{1}, \frac{9}{3}\right\}=3$) indicates that the pivot should be in the bottom row, i.e., X5 should leave the basis. The resulting tableau is shown below :

Basis	- Z	X1	X2	X3	X4	X5	RHS
	1	0	1	0	0	-1	-9
X3	0	0	5.666667	1	0	-1.33333	16
X4	0	0	0.666667	0	1	-0.33333	3
X1	0	1	0.333333	0	0	0.333333	3

Entering variable : X2; Leaving variable : X3

Since X 2 is the only variable with a positive relative profit in row 0 , we enter X 2 into the basis.
The minimum ratio test $\left(\right.$ i.e., M in $\left\{\frac{16}{5.6667}, \frac{3}{0.6667}, \frac{3}{0.3333}\right\}=2.8235$) indicates that X 3 should leave the basis, i.e., the pivot should be in row 1 . The resulting tableau is shown below :

Basis	- Z	X1	X2	X3	X4	X5	RHS
	1	0	0	-0.17647	0	-0.76471	-11.8235
X2	0	0	1	0.176471	0	-0.23529	2.823529
X4	0	1	0	0	1	0	6
X1	0	1	0	-0.05882	0	0.411765	2.058824

Since each variable has a nonpositive relative profit in row 0 , this is an optimal tableau. Thus, the optimal solution to LP is
$\mathrm{Z}=11.8235, \mathrm{X} 2=2.8235, \mathrm{X} 4=6, \mathrm{X} 1=2.0588, \mathrm{X} 3=\mathrm{X} 5=0$.
c. On the sketch of the feasible region in (a), indicate the initial basic solution and the basic solution at each succeeding iteration.

Extreme point A : Initial basic solution
Extreme point B : Second basic solution
Extreme point C : New basic solution

5a. What is INFORMS?
$\underline{\text { Institute }} \underline{\mathbf{f o r}} \underline{\mathbf{O}}$ perations $\underline{\mathbf{R}}$ esearch and the $\underline{\mathbf{M}}$ anagement $\underline{\mathbf{S}}$ ciences
5b. Find (on the INFORMS website at http://www.informs.org) a definition of "Operations Research".

Operations Research (OR) and the Management Sciences (MS) are the professional disciplines that deal with the application of information technology for informed decision-making. OR/MS Professionals aim to provide rational bases for decision making by seeking to understand and structure complex situations and to use this understanding to predict system behavior and improve system performance. Much of this work is done using analytical and numerical techniques to develop and manipulate mathematical and computer models of organizational systems composed of people, machines, and procedures.

56:171 Operations Research

Homework \#2 Solutions -- Fall 2001
The Diet Problem. "The goal of the diet problem is to find the cheapest combination of foods that will satisfy all the daily nutritional requirements of a person." Go to the URL:
http://www-fp.mcs.anl.gov/otc/Guide/CaseStudies/diet/index.html
a. What are the restrictions on calories in the default set of requirements?

Solution: $2,000 \leq$ calories $\leq 2,250$

Γ	Frozen Broccoli	\$0.16	100 zFkg	厂	Carrots,Raw	\$0.07	1/2 Cup Shredded
Γ	Celery, Raw	\$0.04	1 Stalk		Frozen Com	\$0.18	1/2 Cup
Γ	Lettuce,Iceberg, Raw	\$0.02	1 Leaf		Peppers, Sweet, Raw	\$0.53	1 Pepper
Γ	Potatoes, Baked	\$0.06	1/2 Cup		Tofir	\$0.31	1/4 block
Γ	Roasted Chicken	\$0.84	1 lb chicken		Spaghetti W/ Sauce	\$0.78	$11 / 2 \mathrm{Cup}$
Γ	Tomato,Red, Ripe,Raw	\$0.27	1 Tomato, 2-3/5 In		Apple,Raw,W/Skin	\$0.24	1 Fruit,3/Lb,Wo/Rf
Γ	Banana	\$0.15	1 Fruit,Wo/Skn\&Seeds		Grapes	\$0.32	10 Fruits, Wo/Rf
Γ	Kimifnuit,Raw,Fresh	\$0.49	1 Med Frt,WoSkin		Oranges	\$0.15	1 Frt ,2-5/8 Diam
Γ	Bazels	\$0.16	1 Oz		Wheat Bread	\$0.05	1 Sl
Γ	White Bread	\$0.06	1 Sl		Oatmeal Cookies	\$0.09	1 Cookie
Γ	Apple Pie	\$0.16	1 Oz	Γ	Chocolate Chip Cookies	\$0.03	1 Cookie
Γ	Butter,Regular	\$0.05	1 Pat		Cheddar Cheese	\$0.25	1 Oz
Γ	3.3% Fat, Whole Milk	\$0.16	1 C		2\% Lowfat Milk	\$0.23	1 C
Γ	Skim Milk	\$0.13	1 C		Poached Ezzs	\$0.08	Lrg Egs
Γ	Scrambled Ezas	\$0.11	1 Egg		Bologna, Turkey	\$0.15	1 Oz
Γ	Frankfurter, Beef	\$0.27	1 Frankfiurter		Ham,Sliced, Extralean	\$0.33	$1 \mathrm{Sl} 6-1 / 4 \times 4 \times 1 / 16 \mathrm{In}$
Γ	Kielbasa,Prk	\$0.15	1 Sl/6x3-3/4x1/16 In	-	Cap'N Crunch	\$0.31	1 Oz
Γ	Cheerios	\$0.28	10 z		Com Flks, Kellogg'	\$0.28	1 Oz
Γ	Raisin Bm, Kellg'S	\$0.34	1.30 z		Rice Krispies	\$0.32	1 Oz
Γ	Special K	\$0.38	1 Oz		Oatmeal	\$0.82	1 C
Γ	Malt-O-Meal Choc	\$0.52	1 C		Pizza W/Pepperoni	\$0.44	1 Slice
Γ	Taco	\$0.59	1 Small Taco	Γ	Hamburger W/Toppings	\$0.83	1 Burger
Γ	Hotdog, Plain	\$0.31	1 Hotdog		Couscous	\$0.39	1/2 Cup
Γ	White Rice	\$0.08	1/2 Cup		Macaroni, Ckd	\$0.17	1/2 Cup
Γ	Pearrut Butter	\$0.07	2 Tbsp		Pork	\$0.81	40 z
Γ	Sardines in Oil	\$0.45	2 Sardines		White Tuna in Water	\$0.69	30 z
Γ	Popcom,Air-Popped	\$0.04	1 Oz		Potato Chips, Ebqflvr	\$0.22	10 z
Γ	Pretzels	\$0.12	1 Oz		Tortilla Chip	\$0.19	1 Oz
Γ	Chicknoodl Soup	\$0.39	$1 \mathrm{C}(8 \mathrm{FlOz})$		Splt Peas Hamsoup	\$0.67	$1 \mathrm{C}(8 \mathrm{FlOz})$
Γ	Vegetbeef Soup	\$0.71	$1 \mathrm{C}(8 \mathrm{FlOz})$	Γ	Neweng Clamchwod	\$0.75	$1 \mathrm{C}(8 \mathrm{FlOz})$
Γ	Tomato Soup	\$0.39	$1 \mathrm{C}(8 \mathrm{FlOz})$	Γ	New E Clamchwn, W/Mlk	\$0.99	$1 \mathrm{C}(8 \mathrm{FlOz})$
Г	Crm Mshurn Soup, W/M1k	\$0.65	$1 \mathrm{C}(8 \mathrm{FlOz})$	Γ	Beanbacn Soup, W/Watr	\$0.67	$1 \mathrm{C}(8 \mathrm{FlOz})$

b. What is the minimum-cost menu meeting the nutritional requirements using the foods you indicated?

Indicate the solution in the left 2 columns of the table below.

Change the default upper limit on calories to 1500 /day and solve the problem again. (Be sure that the lower bound \leq upper bound!)
c. What is the minimum-cost menu meeting the nutritional requirements using the foods you indicated? Indicate the solution in the right 2 columns of the table below.
Example solution: Note that only six foods are included in the optimal solution! This is a very economical menu, satisfying nutritional requirements, but probably not very satisfying in other ways!

Quantity (\# servings)	Cost	Foods	$\begin{gathered} \hline \text { Quantity } \\ \text { (\# servings) } \end{gathered}$	Cost
3.09	0.22	1. Carrots,Raw	3.10	0.22
10.00	0.40	2. Celery, Raw	10.00	0.40
1.44	0.03	3. Lettuce,Iceberg,Raw	2.19	0.04
		4. Roasted Chicken		
		5. Spaghetti W/ Sauce		
		6. Wheat Bread		
		7. White Bread		
		8. Chocolate Chip Cookies		
		9. Butter,Regular		
		10.3.3\% Fat,Whole Milk		
		11.2\% Lowfat Milk		
2.13	0.28	12. Skim Milk	1.85	0.24
		13. White Rice		
3.18	0.22	14. Peanut Butter	0.15	0.01
9.95	0.40	15. Popcorn,Air-Popped	8.22	0.33
Total Cost	\$1.54/day		Total Cost	\$1.24/day

* New restrictions on calories : $1,000 \leq$ calories $\leq 1,500$

2. Below are several simplex tableaus. Assume that the objective in each case is to be minimized. Classify each tableau by writing to the right of the tableau a letter \mathbf{A} through \mathbf{G}, according to the descriptions below. Also answer the question accompanying each classification, if any.
(A) Nonoptimal, nondegenerate tableau with bounded solution. Circle a pivot element which would improve the objective.
(B) Nonoptimal, degenerate tableau with bounded solution. Circle an appropriate pivot element. Would the objective improve with this pivot?
(C) Unique nondegenerate optimum.
(D) Optimal tableau, with alternate optimum. State the values of the basic variables. Circle a pivot element which would lead to another optimal basic solution. Which variable will enter the basis, and at what value?
(E) Objective unbounded (below). Specify a variable which, when going to infinity, will make the objective arbitrarily low.
(F) Tableau with infeasible primal

Solution:

(i)	-2	X_{1}	X_{2}	X_{3}	X_{4}	X_{5}	x_{6}	X_{7}	X_{8}	RHS	
	1	-3	0	1	1	0	0	2	3	-45	
	0	0	0	-4	0	0	1	0	0	9	A.
	0	-6	0	3	-2	1	0	2	3	5	
	0		1	2	-5	0	0	1	1	8	
(ii)	-2	X_{1}	X_{2}	X_{3}	X_{4}	X_{5}	x_{6}	X_{7}	X_{8}	RHS	
	1	3	0	-1	3	0	0	2	-2	-45	
	0	0	0	-4	0	0	1	3	0	9	B
	0	-4	1		-5	0	0	-2		0	
	0	-6	0		-2	1	0	-4		5	

(iii)-2	X_{1}	X_{2}	X_{3}	X_{4}	X_{5}	X_{6}	X_{7}	X_{8}	RHS
1	3	0	1	1	0	0	3	5	-45
0	0	0	-4	0	0	1	3	0	3
0	4	1	2	-5	0	0	2	1	7
0	-6	0	3	-2	1	0	-4	3	15

(iv) -z	X_{1}	X_{2}	X_{3}	$\left(x_{4}\right.$	X_{5}	X_{6}	X_{7}	X_{8}	RHS	
1	3	0	1	-3	0	0	2	0	-45	
0	0	0	-1	0	0	1	3	0	9	B
0	4	1	-4	-5]	0	0	2	1	3	
0	-6	0	3	-2	1	0	-4	3	5	

(v)	-2	X_{1}	X_{2}	X_{3}	X_{4}	X_{5}	X_{6}	X_{7}	X_{8}
1	3	0	0	1	0	0	0	12	-45
0	0	0	-4	0	0	1	3	0	9
	4	1	2	-5	0	0	2	1	8
0	-6	0	3	-2	1	0	-4	3	5

56:171 Operations Research
 Homework \#3 Solution, Fall 2001

1. Revised Simplex Algorithm: Consider the LP:

$$
\begin{array}{ll}
\text { Minimize } & z=3 x_{1}+2 x_{2}+6 x_{3} \\
\text { subject to }\left\{\begin{array}{l}
4 x_{1}+8 x_{2}-x_{3} \leq 5 \\
7 x_{1}-2 x_{2}+2 x_{3} \geq 4 \\
x_{1} \geq 0, x_{2} \geq 0, x_{3} \geq 0
\end{array}\right.
\end{array}
$$

By introducing slack and surplus variables, the problem is rewritten as Min cx subject to $\mathrm{Ax}=\mathrm{b}, \mathrm{x} \geq 0$ where $\mathrm{C}=[3,2,6,0,0], \mathrm{b}=[5,4]$ and $\mathrm{A}=\left[\begin{array}{ccccc}4 & 8 & -1 & 1 & 0 \\ 7 & -2 & 2 & 0 & -1\end{array}\right]$.
Note: In the computation that follows, you need not use more than 3 significant digits.
Suppose that "Phase I" has found the initial basis B $=\{1,2\}$ for the constraints, i.e., basic variables x_{1} and x_{2}.
a. Then using the revised simplex method requires computation of:

$$
\begin{aligned}
& c_{B}=\left[\begin{array}{ll}
3 & 2
\end{array}\right], A^{B}=\left[\begin{array}{cc}
4 & 8 \\
7 & -2
\end{array}\right],\left(A^{B}\right)^{-1}=\left[\begin{array}{cc}
0.03125 & 0.125 \\
0.109375 & -0.0625
\end{array}\right], \\
& x_{B}=\left(A^{B}\right)^{-1} b=\left[\begin{array}{lll}
0.65625 & 0.296875
\end{array}\right], \pi=c_{B}\left(A^{B}\right)^{-1}=\left[\begin{array}{lll}
0.3125 & 0.25
\end{array}\right]
\end{aligned}
$$

b. Use the simplex multiplier vector π to compute the reduced cost of x_{3} :

$$
\bar{c}_{3}=c_{3}-\pi A^{3}=6-[0.3125,0.25]\left[\begin{array}{c}
-1 \\
2
\end{array}\right]=5.8125
$$

c. Will entering x_{3} into the basis improve the solution? _NO_(since the reduced cost is positive!)
d. Use the simplex multiplier vector π to compute the reduced cost of x_{4} :

$$
\bar{c}_{4}=c_{4}-\pi A^{4}=-0.3125
$$

e. Will entering x_{4} into the basis improve the solution? YES, since its reduced cost is negative
f. Select either x_{3} or x_{4} to enter the basis, and compute the substitution rates (where $j=3$ or 4):

$$
\alpha=\left(A^{B}\right)^{-1} A^{j}=\left[\begin{array}{cc}
0.03125 & 0.125 \\
0.109375 & -0.0625
\end{array}\right]\left[\begin{array}{l}
1 \\
0
\end{array}\right]=\left[\begin{array}{c}
0.03125 \\
0.125
\end{array}\right]
$$

g. Perform the minimum ratio test to determine which variable leaves the basis.

$$
\min \left\{\frac{x_{B}}{\alpha_{B}}: \alpha_{B}>0\right\}=\min \left\{\frac{0.65625}{0.03125}, \frac{0.296875}{0.109375}\right\}=\min \{21,2.71429\}=2.71429
$$

Since the second ratio is minimum, the second basic variable is replaced by the entering variable, and the new basis is $\mathrm{B}=\{1,4\}$.
h. Compute, for this new basis,

$$
\begin{aligned}
& c_{B}=[3,0], A^{B}=\left[\begin{array}{ll}
4 & 1 \\
7 & 0
\end{array}\right],\left(A^{B}\right)^{-1}=\left[\begin{array}{cc}
0 & 0.142857 \\
1 & -0.571429
\end{array}\right], \\
& x_{B}=\left(A^{B}\right)^{-1} b=\left[\begin{array}{ll}
0.571429 & 2.71429
\end{array}\right], \pi=c_{B}\left(A^{B}\right)^{-1}=\left[\begin{array}{ll}
0 & 0.428571
\end{array}\right]
\end{aligned}
$$

i. Find a nonbasic variable, if any, which would improve the solution if entered into the basis, and determine which variable would be replaced in the basis.
The reduced costs of the nonbasic variables are now: $\bar{c}_{2}=2.85714, \bar{c}_{3}=5.14286, \bar{c}_{5}=0.428571$
Since the reduced costs are all nonnegative, the current solution is optimal.
2. LP Duality: Write the dual of the following LP:

$$
\begin{aligned}
& \operatorname{Min} 3 x_{1}+2 x_{2}-4 x_{3} \\
& \text { subject to }\left\{\begin{array}{l}
5 x_{1}-7 x_{2}+x_{3} \geq 12 \\
x_{1}-x_{2}+2 x_{3}=18 \\
2 x_{1}-x_{3} \leq 6 \\
x_{2}+2 x_{3} \geq 10 \\
x_{j} \geq 0, \mathrm{j}=1,2,3
\end{array}\right.
\end{aligned}
$$

Solution:

$$
\text { Maximize } 12 y_{1}+18 y_{2}+6 y_{3}+10 y_{4}
$$

subject to

$$
\left\{\begin{array}{c}
5 y_{1}+y_{2}+y_{3} \leq 3 \\
-7 y_{1}-y_{2}+y_{4} \leq 2 \\
y_{1}+2 y_{2}-y_{3}+2 y_{4} \leq-4
\end{array}\right.
$$

with sign restrictions: $\mathrm{y}_{1} \geq 0, \mathrm{y}_{3} \leq 0, \mathrm{y}_{4} \geq 0$ (y_{2} unrestricted in sign)
3. Consider the following primal LP problem:

$$
\begin{gathered}
\operatorname{Max} x_{1}+2 x_{2}-9 x_{3}+8 x_{4}-36 x_{5} \\
\text { subject to }\left\{\begin{array}{l}
2 x_{2}-x_{3}+x_{4}-3 x_{5} \leq 40 \\
x_{1}-x_{2}+2 x_{4}-2 x_{5} \leq 10 \\
x_{j} \geq 0, \mathrm{j}=1,2,3,4,5
\end{array}\right.
\end{gathered}
$$

a. Write the dual LP problem Solution:

Min $40 y_{1}+10 y_{2}$
subject to:

$$
\left\{\begin{array}{c}
y_{2} \geq 1 \\
2 y_{1}-y_{2} \geq 2 \\
-y_{1} \geq-9 \\
y_{1}+2 y_{2} \geq 8 \\
-3 y_{1}-2 y_{2} \geq-36
\end{array}\right.
$$

and $y_{j} \geq 0, j=1,2$
b. Sketch the feasible region of the dual LP in 2 dimensions, and use it to find the optimal solution.

The objective function evaluated at the points $\mathrm{A}(2.4,2.8), \mathrm{B}(4.667,7.333), \mathrm{C}(9,4.5), \mathrm{D}(9,1)$, and $\mathrm{E}(3.5,1)$ are $124,260,405,370$, and 150 , respectively, so that the minimum value $(=124)$ is achieved at $(2.4,2.8)$, i.e., $\mathrm{y}_{1}=2.4, \mathrm{y}_{2}=2.8$.
c. Using complementary slackness conditions,

- write equations which must be satisfied by the optimal primal solution x^{*}

Solution: Since both y_{1}, y_{2} are positive, primal constraint (1) and (2) must be tight, i.e.,
$2 x_{2}-x_{3}+x_{4}-3 x_{5}=40, x_{1}-x_{2}+2 x_{4}-2 x_{5}=10$.

- which primal variables must be zero?

Solution: since constraints (1), (3), and (5) are slack, the primal variables $\mathrm{x}_{1}, \mathrm{x}_{3}$, and x_{5} must be zero.
d. Using the information in (c.), determine the optimal solution x^{*}.

Solution: $\mathrm{x}_{2}=14 \& \mathrm{x}_{4}=12$, while $\mathrm{x}_{\mathrm{j}}=0$ for $\mathrm{j}=1,3,5$.
e. Compare the optimal objective values of the primal and dual solutions.
Solution: at x^{*}, the objective function is $2 \times 14+8 \times 12=124$, which is identical to the optimal dual objective value.
4. LP Sensitivity Analysis: Cornco produces two products: PS and QT. The sales price for each product and the maximum quantity of each that can be sold during each of the next three months are:

Month $1 \quad$ Month $2 \quad$ Month 3

Product		Price	Demand		Price	Demand		
	Price	Demand						
PS	$\$ 40$	50		$\$ 60$	45		$\$ 55$	50
QT		$\$ 35$	43		$\$ 40$	50		$\$ 44$

Each product must be processed through two assembly lines: $1 \& 2$. The number of hours required by each product on each assembly line are:

Product	Line 1	$\underline{\text { Line } 2}$
PS	3 hours	2 hours
QT	2 hours	2 hours

The number of hours available on each assembly line during each month are:

$\frac{\text { Line }}{1}$	$\frac{\text { Month 1 }}{200}$		Month 2 2
	140	160	$\frac{\text { Month 3 }}{190}$
2	150	110	

Each unit of PS requires 4 pounds of raw material while each unit of QT requires 3 pounds. A total of 710 units of raw material can be purchased during the three-month interval at $\$ 3$ per pound. At the beginning of month 1,10 units of PS and 5 units of QT are available. It costs $\$ 10$ to hold a unit of a unit of either product in inventory for a month.

Solution:

Define variables
$\mathrm{Pt}=$ \# units of product PS produced in month $\mathrm{t}, \mathrm{t}=1,2,3$
Qt = \# units of product QT produced in month $\mathrm{t}, \mathrm{t}=1,2,3$
$\mathrm{R}=$ (total) \# units of raw material purchased
$\mathrm{St}=$ \# units of product PS sold in month $\mathrm{t}, \mathrm{t}=1,2,3$
$\mathrm{Tt}=$ \# units of product QT sold in month $\mathrm{t}, \mathrm{t}=1,2,3$
It = \# units of product PS in inventory at end of month $\mathrm{t}, \mathrm{t}=0,1,2$
$\mathrm{Jt}=\#$ units of product QT in inventory at end of month $\mathrm{t}, \mathrm{t}=0,1,2$
Objective: Maximize profit $=$

$$
\left.\begin{array}{ll}
\begin{array}{cc}
40 \mathrm{~S} 1+60 \mathrm{~S} 2+55 \mathrm{~S} 3 & \text { (revenue from sale of PS) } \\
+35 \mathrm{~T} 1+40 \mathrm{~T} 2+44 \mathrm{~T} 3
\end{array} & \begin{array}{c}
\text { (revenue from sale of QT) } \\
-3 \mathrm{R}
\end{array} \\
\text { (purchase of raw material) }
\end{array}\right)
$$

Subject to the constraints:

$\mathrm{R} \leq 710$	(limited availability of raw material)
$\mathrm{S} 1 \leq 50, \mathrm{~S} 2 \leq 45, \mathrm{~S} 3 \leq 50$	(demand constraints for PS)
$\mathrm{T} 1 \leq 43, \mathrm{~T} 2 \leq 50, \mathrm{~T} 3 \leq 40$	(demand constraints for QT)
$3 \mathrm{P} 1+2 \mathrm{Q} 1 \leq 200$	(hours available on line 1, month 1)
$3 \mathrm{P} 2+2 \mathrm{Q} 2 \leq 160$	(hours available on line 1, month 2)
$3 \mathrm{P} 3+2 \mathrm{Q} 3 \leq 190$	(hours available on line 1, month 3)
$2 \mathrm{P} 1+2 \mathrm{Q} 1 \leq 140$	(hours available on line 2, month 1)
$2 \mathrm{P} 2+2 \mathrm{Q} 2 \leq 150$	(hours available on line 2, month 2)
$2 \mathrm{P} 3+2 \mathrm{Q} 3 \leq 110$	(material balance of PS, month 1)
$\mathrm{P} 1+\mathrm{I} 0=50+\mathrm{S} 1+\mathrm{I} 1$	(material balance of PS, month 2)
$\mathrm{P} 2+\mathrm{I} 1=45+\mathrm{S} 2+\mathrm{I} 2$	(material balance of PS, month 3)
$\mathrm{P} 3+\mathrm{I} 2=50+\mathrm{S} 3$	(material balance of QT, month 1)
$\mathrm{Q} 1+\mathrm{J} 0=43+\mathrm{T} 1+\mathrm{J} 1$	(material balance of QT, month 2)
$\mathrm{Q} 2+\mathrm{J} 1=50+\mathrm{T} 2+\mathrm{J} 2$	(consumption of raw material)
$\mathrm{Q} 3+\mathrm{J} 2=40+\mathrm{T} 3$	
$4 \mathrm{P} 1+3 \mathrm{Q} 1+4 \mathrm{P} 2+3 \mathrm{Q} 2+4 \mathrm{P} 3+3 \mathrm{Q} 3 \leq \mathrm{R}$	

Note: the upper bounds on $\mathrm{R}, \mathrm{St}, \mathrm{Tt}$, etc. could be imposed either by using the "simple upper bound" (SUB) command or by adding a row to the problem. The former is preferred!

LINDO output:

```
MAX 40 S1 + 60 S2 + 55 S3 + 35 T1 + 40 T2 + 44 T3 - 3 R - 10 I1
    - 10 I2 - 10 J1 - 10 J2
    SUBJECT TO
\begin{tabular}{rrrr} 
2) & \(3 \mathrm{P} 1+2 \mathrm{Q} 1<=\) & 200 & \\
3) & \(3 \mathrm{P} 2+2 \mathrm{Q} 2<=\) & 160 & \\
4) & \(3 \mathrm{P} 3+2 \mathrm{Q} 3<=\) & 190 & \\
5) & \(2 \mathrm{P} 1+2 \mathrm{Q} 1<=\) & 140 & \\
6) & \(2 \mathrm{P} 2+2 \mathrm{Q} 2<=\) & 150 & \\
7) & \(2 \mathrm{P} 3+2 \mathrm{Q}\langle=\) & 110 & \\
8) \(-\mathrm{S} 1-\mathrm{I} 1+\mathrm{P} 1+\mathrm{IO}=\) & 0 \\
9) \(-\mathrm{S} 2+\mathrm{I} 1-\mathrm{I} 2+\mathrm{P} 2=\) & 0
\end{tabular}
10)-S3 + I2 + P3 = 0
```


RANGES IN WHICH THE BASIS IS UNCHANGED:

	CURRENT	OBJ COEFFICIENT RANGES	
VARIABLE	COEF	ALLOWABLE	ALLOWABLE
S1	40.000000	INCREASE	DECREASE
S2	60.000000	5.000000	1.000000
S3	55.000000	INFINITY	10.000000
T1	35.000000	INFINITY	6.000000
T2	40.000000	2.000000	5.000000
		INFINITY	5.000000

T3	44.000000	1.000000	29.000000
R	-3.000000	INFINITY	2.000000
I1	-10.000000	1.500000	7.500000
I2	-10.000000	11.000000	INFINITY
J1	-10.000000	10.000000	INFINITY
J2	-10.000000	1.000000	INFINITY
P1	0.000000	6.000000	2.000000
Q1	0.000000	2.000000	5.000000
P2	0.000000	7.500000	1.500000
Q2	0.000000	1.000000	5.000000
P3	0.000000	INFINITY	6.000000
Q3	0.000000	6.000000	29.000000
I0	0.000000	INFINITY	40.000000
J0	0.000000	INFINITY	35.000000

| | | RIGHTHAND SIDE RANGES |
| ---: | ---: | ---: | ---: | ROW | CURRENT | ALLOWABLE | ALLOWABLE | |
| ---: | ---: | ---: | ---: |
| | RHS | INCREASE | DECREASE |
| 2 | 200.000000 | INFINITY | 5.000000 |
| 3 | 160.000000 | 15.00000 | 3.750000 |
| 4 | 190.000000 | INFINITY | 30.000000 |
| 5 | 140.000000 | 11.50000 | 6.666667 |
| 6 | 150.000000 | INFINITY | 10.000000 |
| 7 | 110.000000 | 15.333333 | 3.333333 |
| 8 | 0.000000 | 40.000000 | 10.000000 |
| 9 | 0.000000 | 40.000000 | 10.000000 |
| 10 | 0.000000 | 5.000000 | 5.000000 |
| 11 | 0.000000 | 20.000000 | 23.000000 |
| 12 | 0.000000 | 15.000000 | 10.000000 |
| 13 | 0.000000 | 5.000000 | 35.000000 |
| 14 | 0.00000 | 5.000000 | 23.000000 |

Row	(BASIS)	S1	S2	S3	T1	T2	T3
1	ART	0.000	10.000	6.000	0.000	5.000	0.000
2	SLK 2	0.000	0.000	1.000	0.000	0.333	0.000
3	Q2	0.000	0.000	0.000	0.000	1.000	0.000
4	SLK 4	0.000	0.000	-1.000	0.000	0.000	0.000
5	S1	1.000	-1.000	-1.000	0.000	-1.000	0.000
6	SLK 6	0.000	0.000	0.000	0.000	-0.667	0.000
7	Q3	0.000	0.000	-1.000	0.000	0.000	0.000
8	I1	0.000	1.000	0.000	0.000	0.667	0.000
9	T1	0.000	0.000	1.000	1.000	0.333	0.000
10	P3	0.000	0.000	1.000	0.000	0.000	0.000
11	Q1	0.000	0.000	1.000	0.000	0.333	0.000
12	P1	0.000	0.000	-1.000	0.000	-0.333	0.000
13	T3	0.000	0.000	-1.000	0.000	0.000	1.000
14	P2	0.000	0.000	0.000	0.000	-0.667	0.000
ROW	R	I1	I2	J1	J2	P1	Q1
1	2.000	0.000	11.000	10.000	1.000	0.000	0.000
2	-1.000	0.000	1.000	0.333	-0.333	0.000	0.000
3	0.000	0.000	0.000	1.000	-1.000	0.000	0.000
4	0.000	0.000	-1.000	0.000	0.000	0.000	0.000
5	1.000	0.000	0.000	-1.000	1.000	0.000	0.000
6	0.000	0.000	0.000	-0.667	0.667	0.000	0.000
7	0.000	0.000	-1.000	0.000	0.000	0.000	0.000
8	0.000	1.000	-1.000	0.667	-0.667	0.000	0.000
9	-1.000	0.000	1.000	1.333	-0.333	0.000	0.000
10	0.000	0.000	1.000	0.000	0.000	0.000	0.000
11	-1.000	0.000	1.000	0.333	-0.333	0.000	1.000
12	1.000	0.000	-1.000	-0.333	0.333	1.000	0.000
13	0.000	0.000	-1.000	0.000	-1.000	0.000	0.000

14	0.000	0.000	0.000	-0.667	0.667	0.000	0.000
ROW	P2	Q2	P3	Q3	IO	J0	SLK 2
1	0.000	0.000	0.000	0.000	40.000	35.000	0.000
2	0.000	0.000	0.000	0.000	0.000	0.000	1.000
3	0.000	1.000	0.000	0.000	0.000	0.000	0.000
4	0.000	0.000	0.000	0.000	0.000	0.000	0.000
5	0.000	0.000	0.000	0.000	1.000	0.000	0.000
6	0.000	0.000	0.000	0.000	0.000	0.000	0.000
7	0.000	0.000	0.000	1.000	0.000	0.000	0.000
8	0.000	0.000	0.000	0.000	0.000	0.000	0.000
9	0.000	0.000	0.000	0.000	0.000	1.000	0.000
10	0.000	0.000	1.000	0.000	0.000	0.000	0.000
11	0.000	0.000	0.000	0.000	0.000	0.000	0.000
12	0.000	0.000	0.000	0.000	0.000	0.000	0.000
13	0.000	0.000	0.000	0.000	0.000	0.000	0.000
14	1.000	0.000	0.000	0.000	0.000	0.000	0.000
Row	SLK 3	SLK 4	SLK 5	SLK 6	SLK 7	SLK 14	
1	10.000	0.000	10.000	0.000	14.500	5.000	7590.000
2	1.333	0.000	0.500	0.000	1.500	-1.000	5.000
3	0.000	0.000	0.000	0.000	0.000	0.000	50.000
4	0.000	1.000	0.000	0.000	-1.000	0.000	30.000
5	-1.000	0.000	-1.500	0.000	-1.500	1.000	40.000
6	-0.667	0.000	0.000	1.000	0.000	0.000	10.000
7	0.000	0.000	0.000	0.000	0.500	0.000	5.000
8	-0.333	0.000	0.000	0.000	0.000	0.000	25.000
9	1.333	0.000	2.000	0.000	1.500	-1.000	20.000
10	0.000	0.000	0.000	0.000	0.000	0.000	50.000
11	1.333	0.000	2.000	0.000	1.500	-1.000	15.000
12	-1.333	0.000	-1.500	0.000	-1.500	1.000	55.000
13	0.000	0.000	0.000	0.000	0.500	0.000	5.000
14	0.333	0.000	0.000	0.000	0.000	0.000	20.000
16	0.500	0.000	0.000	0.000	5.000		

Answer the questions below, using the output above for the original problem, if possible. If not possible, you need not run LINDO again.
a. Find the new optimal solution if it costs $\$ 11$ to hold a unit of PS in inventory at the end of month 1.

Solution: The current objective coefficient of I1 (the amount of PS in inventory at the end of month 1) is -10 .

According to the above LINDO output, the current basis is optimal for values of this coefficient between $-10-7.5=-17.5$ and $-10+11=+1$. If the inventory cost were $\$ 11$, the new coefficient would be -11 , which is within the range $[-17.5,+1]$, so the current basis remains optimal and the values of the basic variables are unchanged.
b. Find the company's new optimal solution if 210 hours on line 1 are available during month 1 .

Solution: Currently 200 hours (the right-hand-side of row 2) are available on line 1 in month 1, of which 195 are used (since the slack in this constraint is 5). The range within which the current basis remains optimal is $200-5$ to $200+\infty$, i.e., the range [195, +]. Since 210 is within this range, the current basis remains optimal, although the value of the basic variable SLK2 will increase from 5 to 15.

	RIGHTHAND SIDE RANGES		
ROW	CURRENT	ALLOWABLE	ALLOWABLE
	RHS	INCREASE	DECREASE
2	200.000000	INFINITY	5.000000

c. Find the company's new profit level if 109 hours are available on line 2 during month 3 .

Solution: The right-hand-side of row 7 would be changed: 7) $2 \mathrm{P} 3+2 \mathrm{Q} 3<=110$

ROW	SLACK OR SURPLUS	DUAL PRICES
7)	0.000000	14.500000

Currently, all available hours (110) are used. The "dual price" (+14.5)is in this case the "dual variable", indicating that the profit changes at the rate of $\$ 14.5$ hour within the range
$[110-3.3333,110+15.3333]=[106.6667,125.3333]$.

ROW	CURRENT	RIGHTHAND SIDE RANGES	
	RHS	ALLOWABLE	ALLOWABLE
7	110.00000	INCREASE	DECREASE
		15.333333	3.333333

Therefore, a decrease of 1 hour will reduce the profit by $\$ 14.50$.
d. What is the most Cornco should be willing to pay for an extra hour of line 1 time during month 2 ?

Solution: The "dual variable" for row 3 is $+10 \$ /$ hour, which is valid for any increase up to 15 hours.

ROW	SLACK OR SURPLUS	DUAL PRICES	
$3)$	0.000000	10.000000	
		RIGHTHAND SIDE RANGES	
ROW	CURRENT	ALLOWABLE	ALLOWABLE
	RHS	INCREASE	DECREASE
3	160.000000	15.000000	3.750000

e. What is the most Cornco should be willing to pay for an extra hour of line 1 time during month 3 ?

Solution: There is currently 30 hours of slack in row 4 , which imposes the restriction on use of hours on line 1 during month 3 . Therefore, the dual variable is zero, indicating that additional time has no value.
ROW SLACK OR SURPLUS DUAL PRICES
4) 30.0000000 .000000
f. Find the new optimal solution if PS sells for $\$ 50$ during month 2 .

Solution: The variable S2, the sales of PS during month 2, has an objective coefficient of +60 :

	OBJ COEFFICIENT RANGES		
VARIABLE	CURRENT	ALLOWABLE	ALLOWABLE
	COEF	INCREASE	DECREASE
S2	60.000000	INFINITY	10.000000

A drop of $\$ 10$ in the selling price $\$ 60$ to $\$ 50$, is exactly the "allowable decrease", and so the current basis remains optimal. Since the values of the basic variables do not depend upon the objective coefficients, their values remain unchanged.
g. Find the new optimal solution if QT sells for $\$ 50$ during month 3.

Solution: The variable T3, the amount of QT sold during month 3, is currently basic ($=5$). The "allowable increase" in the objective coefficient is only 1 , so an increase of $\$ 6$ is outside the range within which the current basis is optimal.

		OBJ COEFFICIENT	RANGES	
VARIABLE	CURRENT	ALLOWABLE	ALLOWABLE	
	COEF	INCREASE	DECREASE	
T3	44.00000	1.00000	29.000000	

It is not possible to determine the new basic solution, given the available output from LINDO.
h. Suppose spending $\$ 20$ on advertising would increase demand for QT in month 2 by 5 units. Should the advertising be done?
Solution: The demand for QT in month 2 is currently 50 , the upper bound on the variable T2.
$\begin{array}{ccc}\text { VARIABLE } & \text { VALUE } & \text { REDUCED COST }\end{array}$

The "reduced cost" is defined by LINDO as the rate at which the objective (profit) deteriorates as T2 is increased. So that means that increasing the sales of QT in month 2 will improve the profit at the rate of $\$ 5$ per unit. The cost of increasing sales by the proposed advertising is $\$ 20 / 5$ units $=\$ 4 /$ unit, and so it appears that the advertising is cost-effective. However, the LINDO output does not easily allow us to know that this $\$ 5 /$ unit is valid for an increase of 5 units of sales. (The increase allowed without changing the basis could be calculated by performing a minimum ratio test using the substitution rates for T 2 in the tableau, however:

ROW (BASIS)	T2	RHS	ratio
1 ART	5.000	7590.000	
2 SLK 2	0.333	5.000	$5 / 0.333=15$

3	Q2	1.000	50.000	$50 / 1$	$=50$
4	SLK 4	0.000	30.000		
5	S1	-1.000	40.000		
6	SLK 6	-0.667	10.000		
7	Q3	0.000	5.000		
8	I1	0.667	25.000	$25 / 0.667=37.5$	
9	T1	0.333	20.000	$20 / 0.333=60$	
10	P3	0.000	50.000		
11	Q1	0.333	15.000	$15 / 0.333=45$	
12	P1	-0.333	55.000		
13	T3	0.000	5.000		
14	P2	-0.667	20.000		

This calculation indicates that an increase of 15 units in T2 is allowed before a basic variable (SLK 2) is reduced to zero, preventing any further increase of T2.

56:171 Operations Research
 Homework \#4 Solutions -- Fall 2001

1. Linear Programming sensitivity. A paper recycling plant processes box board, tissue paper, newsprint, and book paper into pulp that can be used to produce three grades of recycled paper (grades 1, 2, and 3). The prices per ton and the pulp contents of the four inputs are:

Input type	Cost \$/ton	Pulp content
Box board	5	15%
Tissue paper	6	20%
Newsprint	8	30%
Book paper	10	40%

Two methods, de-inking and asphalt dispersion, can be used to process the four inputs into pulp. It costs $\$ 20$ to de-ink a ton of any input. The process of de-inking removes 10% of the input's pulp. It costs $\$ 15$ to apply asphalt dispersion to a ton of material. The asphalt dispersion process removes 20% of the input's pulp. At most 3000 tons of input can be run through the asphalt dispersion process or the de-inking process. Grade 1 paper can only be produced with newsprint or book paper pulp; grade 2 paper, only with book paper, tissue paper, or box board pulp; and grade 3 paper, only with newsprint, tissue paper, or box board pulp. To meet its current demands, the company needs 500 tons of pulp for grade 1 paper, 500 tons of pulp for grade 2 paper, and 600 tons of pulp for grade 3 paper. The LP model below was formulated to minimize the cost of meeting the demands for pulp.

Define the variables
BOX = tons of purchased boxboard
TISS = tons of purchased tissue
NEWS = tons of purchased newsprint
BOOK = tons of purchased book paper
BOX1 $=$ tons of boxboard sent through de-inking
TISS1 $=$ tons of tissue sent through de-inking
NEWS1 = tons of newsprint sent through de-inking
BOOK1 = tons of book paper sent through de-inking
BOX2 $=$ tons of boxboard sent through asphalt dispersion
TISS2 $=$ tons of tissue sent through asphalt dispersion
NEWS2 $=$ tons of newsprint sent through asphalt dispersion
BOOK2 $=$ tons of book paper sent through asphalt dispersion
PBOX $=$ tons of pulp recovered from boxboard
PTISS $=$ tons of pulp recovered from tissue
PNEWS= tons of pulp recovered from newsprint
PBOOK = tons of pulp recovered from book paper
PBOX1 = tons of boxboard pulp used for grade 1 paper,
PBOX2 $=$ tons of boxboard pulp used for grade 2 paper, etc.
PBOOK 3 = tons of book paper pulp used for grade 3 paper.
The LP model using these variables is:
MIN 5 BOX +6 TISS +8 NEWS +10 BOOK +20 BOX1 +20 TISS1 +20 NEWS1
+20 BOOK1 +15 BOX2 +15 TISS2 +15 NEWS2 +15 BOOK2
SUBJECT TO

- BOX + BOX1 + BOX2 <= 0
- TISS + TISS1 + TISS2 $<=0$
- NEWS + NEWS1 + NEWS2 <= 0
$-\mathrm{BOOK}+\mathrm{BOOK} 1+\mathrm{BOOK} 2<=0$ $0.135 \mathrm{BOX1}+0.12 \mathrm{BOX2}-\mathrm{PBOX}=0$ 0.18 TISS1 +0.16 TISS2 - PTISS $=0$ 0.27 NEWS1 + 0.24 NEWS2 - PNEWS = 0 0.36 BOOK1 +0.32 BOOK2 $-\mathrm{PBOOK}=0$
- PBOX + PBOX2 + PBOX3 <= 0
- PTISS + PTISS2 + PTISS3 <= 0
- PNEWS + PNEWS1 + PNEWS3 <= 0
$-\mathrm{PBOOK}+\mathrm{PBOOK1}+\mathrm{PBOOK} 2<=0$ PNEWS1 + PBOOK1 >= 500 PBOX2 + PTISS2 + PBOOK2 $>=500$

```
16) PBOX3 + PTISS3 + PNEWS3 >= 600
17) BOX1 + TISS1 + NEWS1 + BOOK1 <= 3000
18) BOX2 + TISS2 + NEWS2 + BOOK2 <= 3000
END
```

- Rows 2-5 state that only the supply of each input material which is purchased can be processed, either by de-inking or asphalt dispersion.
- Row 6 states that the recovered pulp in the boxboard is 90% of that in the boxboard which is processed by de-inking, i.e., $(0.90)(0.15) \mathrm{BOX} 1$, since boxboard is 15% pulp, plus 80% of that in the boxboard which is processed by asphalt dispersion, i.e., $(0.80)(0.15) \mathrm{BOX} 2$.
- Rows 7-9 are similar to row 6, but for different input materials.
- Rows $10-13$ state that no more than the pulp which is recovered from each input may be used in making paper (grades 1, 2, \&/or 3). Note that some variables are omitted, e.g., PBOX1, since boxboard cannot be used in Grade 1 paper.
- Rows 14-16 state that the demand for each grade of paper must be satisfied.
- Rows 17-18 state that each process (de-inking \& asphalt dispersion) has a maximum throughput of 3000 tons. (The problem statement is unclear here, and might be interpreted as stating the total throughput of both processes cannot exceed 3000 tons, in which case rows $17 \& 18$ would be replaced by

17) BOX1 + TISS1 + NEWS1 + BOOK1

+ BOX2 + TISS2 + NEWS2 + BOOK2 <= 3000
The solution found by LINDO is as follows:

LP OPTIMUM FOUND AT STEP 25 OBJECTIVE FUNCTION VALUE		
1)	140000.0	
VARIABLE	VALUE	REDUCED COST
BOX	0.000000	0.000000
TISS	0.000000	6.000000
NEWS	2500.000000	0.000000
BOOK	2833.333252	0.000000
B0X1	0.000000	11.124999
TISS1	0.000000	1.499999
NEWS1	0.000000	0.249999
B00K1	2333.333252	0.000000
BOX2	0.000000	9.333334
TISS2	0.000000	0.222223
NEWS2	2500.000000	0.000000
BOOK2	500.000000	0.000000
PBOX	0.000000	0.000000
PTISS	0.000000	0.000000
PNEWS	600.000000	0.000000
PBOOK	1000.000000	0.000000
PBOX2	0.000000	19.444445
PBOX3	0.000000	0.000000
PTISS2	0.000000	19.444445
PTISS3	0.000000	0.000000
PNEWS1	0.000000	19.444445
PNEWS3	600.000000	0.000000
PBOOK1	500.000000	0.000000
PBOOK2	500.000000	0.000000
ROW	SLACK OR SURPLUS	DUAL PRICES
2)	0.000000	5.000000
3)	0.000000	0.000000
4)	0.000000	8.000000
5)	0.000000	10.000000
6)	0.000000	-102.777779
7)	0.000000	-102.777779
8)	0.000000	-102.777779
9)	0.000000	-83.333336
10)	0.000000	102.777779
11)	0.000000	102.777779
12)	0.000000	102.777779
13)	0.000000	83.333336
14)	0.000000	-83.333336
15)	0.000000	-83.333336

$16)$	0.000000	-102.777779
$17)$	666.666687	0.000000
$18)$	0.000000	1.666667

RANGES IN WHICH THE BASIS IS UNCHANGED:

VARIABLE		OBJ COEFFICIENT	RANGES
	CURRENT	ALLOWABLE	ALLOWABLE
	COEF	INCREASE	DECREASE
BOX	5.000000	INF INITY	5.000000
TISS	6.000000	INFINITY	6.000000
NEWS	8.000000	0.333334	4.666667
BOOK	10.000000	6.000000	1.999989
B0X1	20.000000	INFINITY	11.124999
TISS1	20.000000	INFINITY	1.499999
NEWS1	20.000000	INFINITY	0.249999
B00K1	20.000000	0.249999	0.750001
BOX2	15.000000	INFINITY	9.333333
TISS2	15.000000	INFINITY	0.222222
NEWS2	15.000000	0.222221	4.666667
BOOK2	15.000000	0.666667	0.222221
PBOX	0.000000	INFINITY	77.777779
PTISS	0.000000	INFINITY	1.388890
PNEWS	0.000000	1.388890	19.444443
PBOOK	0.000000	19.444443	83.333336
PBOX2	0.000000	INFINITY	19.444443
PBOX3	0.000000	19.444443	77.777779
PTISS2	0.000000	INFINITY	19.444443
PTISS3	0.000000	19.444443	1.388890
PNEWS1	0.000000	INFINITY	19.444443
PNEWS3	0.000000	1.388890	19.444443
PBOOK1	0.000000	19.444443	83.333336
PBOOK2	0.000000	19.444443	83.333336

		RIGHTHAND SIDE RANGES	
ROW	CURRENT	ALLOWABLE	ALLOWABLE
	RHS	INCREASE	DECREASE
2	0.000000	0.000000	INFINITY
3	0.000000	INFINITY	0.000000
4	0.000000	2500.000000	INFINITY
5	0.000000	2833.333252	INFINITY
6	0.000000	0.000000	600.000000
7	0.000000	0.000000	600.000000
8	0.000000	120.000008	600.000000
9	0.000000	240.000015	840.000000
10	0.000000	600.000000	0.000000
11	0.000000	600.000000	0.000000
12	0.000000	600.000000	120.000008
13	0.000000	840.000000	240.000015
14	500.000000	240.000015	500.000000
15	500.000000	240.000015	500.000000
16	600.000000	120.000008	600.000000
17	3000.000000	INFINITY	666.666687
18	3000.000000	2625.000000	500.000000

THE TABLEAU
$\left.\begin{array}{rrrrrrrr}\text { ROW } & \text { (BASIS) } & \text { BOX } & \text { TISS } & \text { NEWS } & \text { BOOK } & \text { BOX1 } & \text { TISS1 } \\ 1 & \text { ART } & & 0.000 & 6.000 & 0.000 & 0.000 & 11.125\end{array}\right] 1.500$

13	PBOOK2	0.000	0.000	0.000	0.000	0.000	0.000
14	PBOOK1	0.000	0.000	0.000	0.000	0.000	0.000
15	NEWS2	0.000	0.000	0.000	0.000	0.562	0.750
16	NEWS	0.000	0.000	1.000	0.000	0.562	0.750
17	BOX	1.000	0.000	0.000	0.000	-1.000	0.000
18	BOOK2	0.000	0.000	0.000	0.000	-0.562	-0.750
ROW	NEWS1	B00K1	B0X2	TISS2	NEWS2	BOOK2	PBOX
1	0.250	0.000	9.333	0.222	0.000	0.000	0.000
2	-0.125	0.000	0.056	0.037	0.000	0.000	0.000
3	0.000	0.000	0.000	1.000	0.000	0.000	0.000
4	0.000	0.000	0.444	0.296	0.000	0.000	0.000
5	1.000	1.000	-0.444	-0.296	0.000	0.000	0.000
6	0.000	0.000	-0.120	0.000	0.000	0.000	1.000
7	0.000	0.000	0.000	-0.160	0.000	0.000	0.000
8	0.000	0.000	0.120	0.160	0.000	0.000	0.000
9	0.000	0.000	0.000	0.000	0.000	0.000	0.000
10	0.000	0.000	-0.120	0.000	0.000	0.000	0.000
11	0.000	0.000	0.000	-0.160	0.000	0.000	0.000
12	0.000	0.000	0.120	0.160	0.000	0.000	0.000
13	0.000	0.000	0.000	0.000	0.000	0.000	0.000
14	0.000	0.000	0.000	0.000	0.000	0.000	0.000
15	1.125	0.000	0.500	0.667	1.000	0.000	0.000
16	0.125	0.000	0.500	0.667	0.000	0.000	0.000
17	0.000	0.000	-1.000	0.000	0.000	0.000	0.000
18	-1.125	0.000	0.500	0.333	0.000	1.000	0.000
ROW	PTISS	PNEWS	PBOOK	PBOX2	PBOX3	PTISS2	PTISS3
1	0.000	0.000	0.000	19.444	0.000	19.444	0.000
2	0.000	0.000	0.000	3.241	0.000	3.241	0.000
3	0.000	0.000	0.000	0.000	0.000	0.000	0.000
4	0.000	0.000	0.000	0.926	0.000	0.926	0.000
5	0.000	0.000	0.000	-0.926	0.000	-0.926	0.000
6	0.000	0.000	0.000	0.000	0.000	0.000	0.000
7	1.000	0.000	0.000	0.000	0.000	0.000	0.000
8	0.000	1.000	0.000	-1.000	0.000	-1.000	0.000
9	0.000	0.000	1.000	1.000	0.000	1.000	0.000
10	0.000	0.000	0.000	1.000	1.000	0.000	0.000
11	0.000	0.000	0.000	0.000	0.000	1.000	1.000
12	0.000	0.000	0.000	-1.000	0.000	-1.000	0.000
13	0.000	0.000	0.000	1.000	0.000	1.000	0.000
14	0.000	0.000	0.000	0.000	0.000	0.000	0.000
15	0.000	0.000	0.000	-4.167	0.000	-4.167	0.000
16	0.000	0.000	0.000	-4.167	0.000	-4.167	0.000
17	0.000	0.000	0.000	0.000	0.000	0.000	0.000
18	0.000	0.000	0.000	4.167	0.000	4.167	0.000
ROW	PNEWS1	PNEWS3	PBOOK1	PBOOK2	SLK 2	SLK 3	SLK 4
1	19.444	0.000	0.000	0.000	5.000	0.000	8.000
2	3.241	0.000	0.000	0.000	0.000	0.000	0.000
3	0.000	0.000	0.000	0.000	0.000	1.000	0.000
4	0.926	0.000	0.000	0.000	0.000	0.000	0.000
5	-0.926	0.000	0.000	0.000	0.000	0.000	0.000
6	0.000	0.000	0.000	0.000	0.000	0.000	0.000
7	0.000	0.000	0.000	0.000	0.000	0.000	0.000
8	-1.000	0.000	0.000	0.000	0.000	0.000	0.000
9	1.000	0.000	0.000	0.000	0.000	0.000	0.000
10	0.000	0.000	0.000	0.000	0.000	0.000	0.000
11	0.000	0.000	0.000	0.000	0.000	0.000	0.000
12	0.000	1.000	0.000	0.000	0.000	0.000	0.000
13	0.000	0.000	0.000	1.000	0.000	0.000	0.000
14	1.000	0.000	1.000	0.000	0.000	0.000	0.000
15	-4.167	0.000	0.000	0.000	0.000	0.000	0.000
16	-4.167	0.000	0.000	0.000	0.000	0.000	-1.000
17	0.000	0.000	0.000	0.000	-1.000	0.000	0.000
18	4.167	0.000	0.000	0.000	0.000	0.000	0.000
ROW	SLK 5	SLK 10	SLK 11	SLK 12	SLK 13	SLK 14	SLK 15
1	10.000	102.778	102.778	102.778	83.333	83.333	83.333

2	-1.000	0.463	0.463	0.463	-2.778	-2.778	-2.778
3	0.000	0.000	0.000	0.000	0.000	0.000	0.000
4	0.000	3.704	3.704	3.704	2.778	2.778	2.778
5	0.000	-3.704	-3.704	-3.704	-2.778	-2.778	-2.778
6	0.000	0.000	0.000	0.000	0.000	0.000	0.000
7	0.000	0.000	0.000	0.000	0.000	0.000	0.000
8	0.000	-1.000	-1.000	-1.000	0.000	0.000	0.000
9	0.000	0.000	0.000	0.000	-1.000	-1.000	-1.000
10	0.000	1.000	0.000	0.000	0.000	0.000	0.000
11	0.000	0.000	1.000	0.000	0.000	0.000	0.000
12	0.000	-1.000	-1.000	0.000	0.000	0.000	0.000
13	0.000	0.000	0.000	0.000	0.000	0.000	-1.000
14	0.000	0.000	0.000	0.000	0.000	-1.000	0.000
15	0.000	-4.167	-4.167	-4.167	0.000	0.000	0.000
16	0.000	-4.167	-4.167	-4.167	0.000	0.000	0.000
17	0.000	0.000	0.000	0.000	0.000	0.000	0.000
18	0.000	4.167	4.167	4.167	0.000	0.000	0.000
ROW	SLK 16	SLK 17	SLK 18	RHS			
1	$0.10 \mathrm{E}+03$	$0.00 \mathrm{E}+00$	1.7	-0.14E+06			
2	0.463	0.000	0.111	2833.333			
3	0.000	0.000	0.000	0.000			
4	3.704	1.000	0.889	666.667			
5	-3.704	0.000	-0.889	2333.333			
6	0.000	0.000	0.000	0.000			
7	0.000	0.000	0.000	0.000			
8	-1.000	0.000	0.000	600.000			
9	0.000	0.000	0.000	1000.000			
10	0.000	0.000	0.000	0.000			
11	0.000	0.000	0.000	0.000			
12	-1.000	0.000	0.000	600.000			
13	0.000	0.000	0.000	500.000			
14	0.000	0.000	0.000	500.000			
15	-4.167	0.000	0.000	2500.000			
16	-4.167	0.000	0.000	2500.000			
17	0.000	0.000	0.000	0.000			
18	4.167	0.000	1.000	500.000			

a. Complete the following statements: the optimal solution is to purchase only newsprint and book paper, process $\underline{500}$ tons of the book paper and $\underline{2500}$ tons of the newsprint by asphalt dispersion, and the remaining book paper by de-inking. This yields 600 tons of pulp from the newsprint and 1000 tons of pulp from the book paper. One-half of the pulp from book paper is used in each of grades $1 \& 2$ paper, and the newsprint is used in grade 3 paper. This plan will use $\frac{3000-666.66}{3000}=77.78 \% \%$ of the de-inking capacity and 100% of the asphalt dispersion capacity. Note that BOX is a basic variable, but because it has a value of zero, this solution is categorized as degenerate.
b. How much must newsprint increase in price in order that less would be used? $\$ 0.33$ /ton
c. In the optimal solution, no newsprint is processed by the de-inking. Suppose that 5 tons of newsprint were to be de-inked. How should the solution best be modified to compensate? In particular, what should be the adjusted values of:

Quantity Current value Subs. rate Adjusted value
BOX $=$ tons of purchased boxboard
TISS $=$ tons of purchased tissue
NEWS = tons of purchased newsprint
$\mathrm{BOOK}=$ tons of purchased book paper
TISS1 = tons of tissue sent through de-inking
NEWS1 = tons of newsprint sent through de-inking
BOOK1 = tons of book paper sent through de-inking
PNEWS = tons of pulp recovered from newsprint

Current valu 0	Subs. rate 0	Adjusted value
0		0
2500	+0.125	$\underline{2499.375}$
$\underline{2833.33}$	-1.25	$\underline{2839.58}$
0		
0		5
2333.33	+1	2328.33
600	0	600

Solution: The nonbasic variable NEWS1 should be increased by 5 units. The substitution rates of NEWS1 for the basic variables are shown above. Thus we see, for example, that 5×0.125 fewer tons of newsprint and 5×1.25 more tons of book paper should be purchased.
d. Suppose that ten additional tons of pulp for grade 3 paper were required. Is this within the range of requirements for which the current basis is optimal? YES Solution: The requirement (600 tons) for pulp
for grade 3 paper is imposed by the constraint in row 16. The ALLOWABLE INCREASE in that right-hand-side is 120 tons, and so the increase of ten is within the range for which the current basis remains optimal.
What would be the effect on the cost? increase by 10 tons $\times \$ 102.78 /$ ton $=\$ 1027.78$
Solution: The "dual price" of row 16 is -102.78 ($\$ /$ ton) -as the right-hand-side increases, the constraint is more restrictive and the cost will increase (i.e., the dual variable is $+102.78 \$ /$ ton).
How would the quantities of the four raw materials change?
Raw material Current value Subs. rate \quad Adjusted value
BOX $=$ tons of purchased boxboard
TISS $=$ tons of purchased tissue
NEWS $=$ tons of purchased newsprint
BOOK $=$ tons of purchased book paper
Solution: Row 16 in equation form is PBOX3+PTISS3+PNEWS3-SLK $16=600$. (SLK16 is actually a "surplus" variable, despite the name chosen by LINDO!) If the pulp used for grade 3 paper
(PBOX3+PTISS3+PNEWS3) is 610, then SLK16 has increased by 10. The substitution rate $(+0.463)$ indicates that BOOK (tons of purchased book paper) will decrease by 4.63 tons while NEWS (tons of purchased newsprint) will increase by 41.67 .
Other nonzero substitution rates are
BOOK1: substitution rate $=-3.704$ which implies that BOOK1 will increase by 37.04
PNEWS: substitution rate $=-1$ which implies that PNEWS will increase by 10
PNEWS3: substitution rate $=-1$ which implies that PNEWS3 will increase by 10
NEWS2: substitution rate $=-4.167$ which implies that NEWS2 will increase by 41.67
BOOK2: substitution rate $=+4.167$ which implies that BOOK2 will decrease by 41.67
To summarize, then, we buy 41.67 additional tons of newsprint, which is sent through the asphalt dispersion process. Because the asphalt dispersion process was operating at capacity, we must reduce the tons of book paper sent through that process by 41.67 tons. We buy 4.63 fewer tons of book paper, however, so that the increase in book paper sent to the de-inking process is only $41.67-4.63=37.04$ tons.
2. (A modification of Exercise 3, page 317, of Operations Research, by W. Winston). You have been assigned to evaluate the efficiency of the Port Charles Police Department. Eight precincts are to be evaluated. The inputs and outputs for each precinct are as follows:
Inputs:

- Number of policemen
- Number of vehicles used

Outputs:

- Number of patrol units responding to service requests (thousands/year)
- Number of convictions obtained each year (hundreds/year)

The following data has been collected:

Precinct	\#policemen	\# vehicles	\# responses	\#convictions
A	200	60	6	8
B	250	65	5.5	9
C	300	90	8	9.5
D	400	120	10	11
E	350	100	9.5	9
F	300	80	5	7.5
G	275	85	9	8
H	325	75	4.5	10

The city wishes to use this information to determine which precincts, if any, are inefficient.
a. Write the LP model which can be used to compute the efficiency of precinct C .

Maximize $8 v_{1}+9.5 v_{2}$
subject to $300 u_{1}+90 u_{2}=1$

$$
\begin{gathered}
6 v_{1}+8 v_{2}-200 u_{1}-60 u_{2} \leq 0 \\
5.5 v_{1}+9 v_{2}-250 u_{1}-65 u_{2} \leq 0 \\
8 v_{1}+9.5 v_{2}-300 u_{1}-90 u_{2} \leq 0 \\
10 v_{1}+11 v_{2}-400 u_{1}-120 u_{2} \leq 0 \\
4.5 v_{1}+10 v_{2}-325 u_{1}-75 u_{2} \leq 0
\end{gathered}
$$

$$
\begin{gathered}
9.5 v_{1}+9 v_{2}-350 u_{1}-100 u_{2} \leq 0 \\
5 v_{1}+7.5 v_{2}-300 u_{1}-80 u_{2} \leq 0 \\
9 v_{1}+8 v_{2}-275 u_{1}-85 u_{2} \leq 0 \\
u_{1} \geq 0, u_{2} \geq 0, v_{1} \geq 0, v_{2} \geq 0,
\end{gathered}
$$

b. What is the total number of LP problems which need to be solved in order to compute the efficiencies of the eight precincts? 8 (one LP per precinct)

One might use LINDO to do the computation, or any of several other software packages for data envelopment analysis-see, for example, the website http://www.wiso.uni-dortmund.de/lsfg/or/scheel/doordea.htm)
The output below was computed by the APL workspace "DEA" which can be downloaded from the website at URL: http://asrl.ecn.uiowa.edu/dbricker/APL_software.html

i	ID	Efficiency	Freq	R
1	A	1	4	1
2	B	1	2	3
3	C	0.8727	0	6
4	D	0.809	0	7
5	E	0.9042	0	5
6	F	0.6875	0	8
7	G	1	3	2
8	H	0.963	0	4

Freq $=$ frequency of appearance in reference sets of inefficient DMUs $R=$ rank based upon (Efficiency + Freq)

c. In order to make itself look as "efficient" as possible, what "prices" would be assigned by precinct C to the outputs (\# responses \& \# convictions) and to the inputs (\# policemen \& \# vehicles)?
Variable
\# responses
\# convictions
\# policemen
\# vehicles

$\frac{\text { Price }}{0.0925926 / \text { thousand responses }=92.5926 / \text { response }}$
$\underline{0.0138889 / \text { hundred convictions }=13.8889 / \text { conviction }}$
$0 /$ policeman
$0.0111111 /$ vehicle

d. Using these prices for precinct C, compute the ratio of the total value of the output variables responses and convictions to the total value of input variables policemen and vehicles.

Solution: $\frac{0.092596 \times 8+0.0138889 \times 9.5}{0 \times 300+0.011111 \times 90}=\frac{0.87271255}{1} \approx 87.3 \%$
which is in agreement with the efficiency computed for precinct C.
e. Using these same prices which would be assigned by precinct C, which precincts would be judged to be 100% efficient? Solution: Precincts \qquad and \qquad G_.
f. By how much should precinct C cut its number of policemen in order to become "efficient" (assuming that they could maintain their current output levels)? Solution: _2.43056_
3. The ZapCon Company is considering investing in three projects. If it fully invests in a project, the realized cash flows (in millions of dollars) will be as listed in the table below.

Time (years)	Cash flow project 1	Cash flow project 2	Cash flow project 3
0	-3	-2	-2.0
0.5	-1	-0.5	-2.0
1	-1.8	1.5	-1.8
1.5	0.4	1.5	1
2	1.8	1.5	1
2.5	1.8	0.2	1
3	5.5	-1.0	6

For example, project 1 requires an initial cash outflow of $\$ 3$ million, smaller outlays six months and one year from now, begins paying a small return 1.5 years from now, and a final payback of $\$ 5.5$ million 3 years from now. Today ZapCon has $\$ 2$ million in cash. At each time point ($0,0.5,1,1.52$, and 2.5 years from today) the com[any can, if desired, borrow up to $\$ 2$ million at 3.5% (per 6 months) interest. Leftover cash earns 3% (per six months) interest. For example, if after borrowing and investing at time 0 , ZapCon has $\$ 1$ million, it would receive $\$ 30,000$ in interest at time 0.5 year. the company's goal is to maximize cash on hand after cash flows 3 years from now are accounted for. What investment and borrowing strategy should it use? Assume that the company can invest in a fraction of a project. For example, if it invests in 0.5 of project 3 , it has, for example, cash outflows of $-\$ 1$ million at times 0 and 0.5 . No more than 100% investment in a project is possible, however.
a. Formulate a linear programming model to optimize the investment plan.

Solution: Define variables
F30 $=$ incoming cash flow at time 3.0 years
$\mathrm{Pj}=$ investment level in project $\mathrm{j}, \mathrm{j}=1,2,3$
$\mathrm{Bt}=$ amount borrowed (\$millions) at time $\mathrm{t}=00,05,10,15,20,25,30$
$\mathrm{Lt}=$ amount loanded (\$millions) at time $\mathrm{t}=00,05,10,15,20,25,30$
For each of the 7 time periods, there is a cash flow balance equation: flow out = flow in. In addition, there are upper bounds of 1 on the variables P1, P2, and P3. (These are best handled as "simple upper bound" (SUB) constraints:

PICTURE command output:

F	B				L	L	L	B	L	B	L	B	L	B	L
3	0	P	P	P	0	0	0	1	1	1	1	2	2	2	2
0	0	1	2	3	0	5	5	0	0	5	5	0	0	5	5

b. Use LINDO (or other LP solver) to find the optimal solution.

Solution:

OBJECTIVE FUNCTION VALUE

1) 7.338224

VARIABLE	VALUE	REDUCED COST
F30	7.338224	0.000000
B00	3.000000	0.000000
P1	1.000000	-2.793699
P3	1.000000	-2.086015
B05	6.105000	0.000000
B10	10.118674	0.000000
B15	9.072828	0.000000
B20	6.590377	0.000000
B25	4.021039	0.000000
ROW	SLACK	
2)	0.000000	DUAL PRICES
3)	0.000000	-1.229255
$4)$	0.000000	-1.187686
5)	0.000000	-1.147523
$6)$	0.000000	-1.108718
$7)$	0.000000	-1.071225
8)	0.000000	-1.035000
		-1.000000

The optimal solution is to invest in projects 1 and 3 at their full level. This requires borrowing 3 million dollars initially. Additional amounts are borrowed at later points in time, e.g., 10.118 million $\$$ at $t=1$ year. The net cash on hand after 3 years is $\$ 7,338,224$.

1. Transportation Problem Consider the following "balanced" transportation problem with three sources and four destinations, where the transportation cost/unit shipped, supplies available, and amounts required are shown in the table:

Plant \backslash Warehouse	1	2	3	4	Supply
A	1	4	8	6	$\mathbf{7}$
B	1	10	1	7	$\mathbf{1 0}$
C	8	5	6	9	$\mathbf{3}$
Demand	$\mathbf{6}$	$\mathbf{6}$	$\mathbf{3}$	$\mathbf{5}$	

a. A linear programming model of this problem will have _ 7 equality constraints (not counting the objective) and _6_ basic variables.
b. Find an initial feasible basic solution, using the "Northwest Corner Rule":

Solution

c. The shipping cost of this solution is

Solution : $6 \times 1+1 \times 4+5 \times 10+3 \times 1+2 \times 7+3 \times 9=\underline{104}$.
d. Compute the reduced cost of the variable $X_{A 4}$ by identifying the "cycle" of adjustments that would be required in the NW-corner solution if $\mathrm{X}_{\mathrm{A} 4}$ were to be increased by one unit.

Solution: Reduced cost the is $+6-7+10-4=+5$.
e. Entering $X_{A 4}$ into basis will increase the objective function by _5_ per unit shipped from A to 4 .
f. Compute a set of "dual variables" corresponding to the initial NW-corner solution, and use them to compute the reduced cost of $\mathrm{X}_{\mathrm{A} 4}$:

Solution: There are infinitely-many correct answers possible, depending upon the choice of the dual variable to be given an initial assignment, and the value of that assignment. Here, I have chosen to initially assign $\mathrm{U}_{\mathrm{A}}=0$:
$\mathrm{X}_{\mathrm{A} 1}>0 \Rightarrow \mathrm{U}_{\mathrm{A}}+\mathrm{V}_{1}=1 \Rightarrow \mathrm{~V}_{1}=1$
$\mathrm{X}_{\mathrm{A} 2}>0 \Rightarrow \mathrm{U}_{\mathrm{A}}+\mathrm{V}_{2}=4 \Rightarrow \mathrm{~V}_{2}=4$
$X_{B 2}>0 \Rightarrow U_{B}+V_{2}=10 \Rightarrow U_{B}=6$
$\mathrm{X}_{\mathrm{B} 3}>0 \Rightarrow \mathrm{U}_{\mathrm{B}}+\mathrm{V}_{3}=1 \Rightarrow \mathrm{~V}_{3}=-5$
Etc.

Corresponding to demand constraints: $\mathrm{V}_{1}=\underline{1}, ~ \mathrm{~V}_{2}=\underline{4}, \overline{\mathrm{~V}_{3}=\underline{-5}}, \mathrm{~V}_{4}=\underline{1}$
Reduced cost of $\mathrm{X}_{\mathrm{A} 4}$ is $\mathrm{C}_{\mathrm{A} 4}-\left(\mathrm{U}_{\mathrm{A}}+\mathrm{V}_{4}\right)=$ __6__-_(0+1)$]_{-}=\underline{+5}$
g. The reduced cost of $X_{B 1}$ is is $C_{B 1}-\left(U_{B}+V_{1}\right)=\ldots-6$. Entering $X_{B 1}$ into the basis would cause the variable _ $\mathrm{X}_{\mathrm{B} 2}$ to leave the basis, resulting in the basic solution:

The increase in $\mathrm{X}_{\mathrm{A} 4}$ ($\underline{5}$ units) times the reduced $\operatorname{cost}(\underline{-6})$ is $\underline{-30}$, so that the cost of the new solution is $104-30=74$.
h. Continue changing the basis until you have found the optimal solution:

Solution: Recomputing the dual variables:
Corresponding to supply constraints: $\mathrm{U}_{\mathrm{A}}=\ldots \ldots$, , $\mathrm{U}_{\mathrm{B}}=_{ }_{0}, \mathrm{U}_{\mathrm{C}}=\underline{2}$ \qquad
Corresponding to demand constraints: $\mathrm{V}_{1}=\underline{1}, \mathrm{~V}_{2}=\underline{4}, \mathrm{~V}_{3}=\underline{1}, \mathrm{~V}_{4}=\underline{7}$
Using these dual variables, we find that the reduced cost of $X_{C 2}$ is $5-(2+4)=-1<0$, and so we enter $X_{C 2}$ into the solution: The cycle is more complex than the previous iteration, and three basic variables decrease as $X_{C 2}$ increases. The first to reach zero is $X_{C 4}$, when $X_{C 2}=3$.

Recomputing the dual variables:
Corresponding to supply constraints: $\mathrm{U}_{\mathrm{A}}=__{0}, \mathrm{U}_{\mathrm{B}}={ }_{0}, \mathrm{U}_{\mathrm{C}}=$
Corresponding to demand constraints: $\mathrm{V}_{1}=\underline{1}, \mathrm{~V}_{2}=\underline{4}, \mathrm{~V}_{3}=\underline{1}, \mathrm{~V}_{4}=\underline{7}$
Reduced cost of $\mathrm{X}_{\mathrm{A} 4}$ is now $-1<0$, so we enter this variable into the basis:

Recomputing the dual variables:

Corresponding to demand constraints: $\mathrm{V}_{1}=\underline{0}, \mathrm{~V}_{2}=\ldots 4, \mathrm{~V}_{3}=\ldots{ }_{2}, \mathrm{~V}_{4}=\ldots$
The reduced costs are now all nonnegative!
i. The optimal cost is 69 .
2. Powerhouse produces capacitors at three locations: Los Angeles, Chicago, and New York. Capacitors are shipped from these locations to public utilities in five regions of the country: northeast (NE), northwest (NW), midwest (MW), southeast (SE), and southwest (SW). The cost of producing and shipping a capacitor from each plant to each region of the country is given in the table below.

From \backslash to	NE	NW	MW	SE	SW
LA	$\$ 27.86$	$\$ 4.00$	$\$ 20.54$	$\$ 21.52$	$\$ 13.87$
Chicago	$\$ 8.02$	$\$ 20.54$	$\$ 2.00$	$\$ 6.74$	$\$ 10.67$
NY	$\$ 2.00$	$\$ 27.86$	$\$ 8.02$	$\$ 8.41$	$\$ 15.20$

Each plant has an annual production capacity of 100,000 capacitors. Each year, each region of the country must receive the following number of capacitors: NE: 55,000 ; NW: 50,000 ; MW: 60,000 ; SE: 60,000 ; SW: 45,000 .

Powerhouse feels shipping costs are too high, and the company is therefore considering building one or two more production plants. Possible sites are Atlanta and Houston. The costs of producing a capacitor and shipping it to each region of the country are:

From \backslash to	NE	NW	MW	SE	SW
Atlanta	$\$ 8.41$	$\$ 21.52$	$\$ 6.74$	$\$ 3.00$	$\$ 7.89$
Houston	$\$ 15.20$	$\$ 13.87$	$\$ 10.67$	$\$ 7.89$	$\$ 3.00$

It costs $\$ 3$ million (in current dollars) to build a new plant, and operating each plant incurs a fixed cost (in addition to variable shipping and production costs) of $\$ 50,000$ per year. A plant at Atlanta or Houston will have the capacity to produce 100,000 capacitors per year.

Assume that future demand patterns and production costs will remain unchanged. If costs are discounted at a rate of $11 \frac{1}{9} \%$ per year, how can Powerhouse minimize the present value of all costs associated with meeting current and future demands?
Solution: We may either convert the construction costs of the proposed plants into equivalent annual costs, or convert the annual costs over an infinite time period into present values. I have arbitrarily selected the latter. With the given discount rate 0.1111111 , an infinite sequence of annual costs of $\$ 1 /$ year is equivalent to a present value of $(\$ 1 / 0.111111)=\$ 9$.
There are four options to consider. For each option, we solve a transportation problem to compute the annual production \& shipping cost (exclusive of the fixed operating cost and construction costs).
I. No added plants:

f			$\begin{gathered} \text { Shipm } \\ \text { to } \end{gathered}$	ents		
\bigcirc	NE	NW	MW	SE	SW	dummy
m	0	50000	0	0	20000	30000
2	0	0	60000	15000	25000	0
$3 \mid$	55000	0	0	45000	0	0

Cost $=1453700$ (\$ per year)

Present value	
production \& shipping costs : $9 \times 1453700=$	$\$ 13,083,300$
operating costs of plants: $9 \times 3 \times \$ 50,000=$	$\$ 1,350,000$
construction costs:	0
Total present value:	$\$ 14,433,300$

II. Add plant at Atlanta only

f	Shipments					
	to					
r						
\bigcirc	NE	NW	MW	SE	SW	dummy
m						
1	0	50000	0	0	0	50000
2	0	0	60000	0	5000	35000
3	55000	0	0	0	0	45000
4	0	0	0	60000	40000	0

Cost $=978950$ (\$ per year)

Present value	
production \& shipping costs : $9 \times 978950=$	$\$ 8,810,550$
operating costs of plants: $9 \times 4 \times \$ 50,000=$	$\$ 1,800,000$
construction cost of Atlanta plant:	$\$ 3,000,000$
Total present value:	$\$ 13,610,550$

III. Add plant at Houston only

[^0]| f | to | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| r | | | | | | |
| \bigcirc | NE | NW | MW | SE | SW | dummy |
| m | ----- | | | | | |
| 1 | 0 | 50000 | 0 | 0 | 0 | 50000 |
| 2 | 0 | 0 | 60000 | 40000 | 0 | 0 |
| 3 | 55000 | 0 | 0 | 0 | 0 | 45000 |
| 4 | 0 | 0 | 0 | 20000 | 45000 | 35000 |

Cost $=992400$
Present value

production \& shipping costs : $9 \times 992400=$	$\$ 8,931,600$
operating costs of plants: $9 \times 4 \times \$ 50,000=$	$\$ 1,800,000$
construction cost of Houston plant:	$\$ 3,000,000$
Total present value:	$\$ 13,731,600$

IV. Add plants at both Atlanta \& Houston

f	Shipments					
	to					
r						
\bigcirc	NE	NW	MW	SE	SW	dummy
m						
1	0	50000	0	0	0	50000
2	0	0	60000	0	0	40000
3	55000	0	0	0	0	45000
4	0	0	0	60000	0	40000
5	0	0	0	0	45000	55000

Cost $=745000$

Present value	
production \& shipping costs : $9 \times 745,000=$	$\$ 6,705,000$
operating costs of plants: $9 \times 5 \times \$ 50,000=$	$\$ 2,250,000$
construction cost of Atlanta \& Houston plants:	$\$ 6,000,000$
Total present value:	$\$ 14,955,000$

The minimum-cost decision is to build the plant at Atlanta. The L.A. plant will then ship 50,000 annually to the NW region. The Chicago plant will ship 60,000 annually the the MW region and 5000 to the SW region. The NY plant will ship 55,000 to the NE region. The Atlanta plant will ship 60,000 to the SE region and 40,000 to the SW region.
3. The coach of a swim team needs to assign four swimmers to a 400 -meter medley relay team. The "best times" (in seconds for 100 meters) achieved by his seven swimmers in each of the strokes are given below. Which swimmer should the coach assign to each of the four strokes? Which swimmers will not be assigned to the relay team? Are there more than one optimal solution?

Stroke	Alan	Ben	Carl	Don	Ed	Fred	George
Backstroke	66	67	66	64	70	68	64
Breaststroke	71	72	70	69	72	72	73
Butterfly	65	67	71	74	65	64	64
Freestyle	59	59	55	59	54	54	56

Solution: This is an assignment problem. Although it isn't necessary, the matrix has been transposed below, so that the "agents" correspond to the 7 swimmers and the "tasks" to the four strokes:

Cost matrix:

f		to		
r		--		
o	1	2	3	4
m	--	--	--	--
1	66	71	65	59
2	67	72	67	59
3	66	70	71	55
4	64	69	74	59
5	70	72	65	54

$\mathrm{m}=$ \#agents $=7$
$\mathrm{n}=$ \#jobs $=4$
3 "Dummy" jobs were defined
Since each row already contains a zero, no row reduction is possible/necessary.
After column reduction (subtracting 64 from column \#1, 69 from column 2, etc.):

2	2	1	5	0	0	0
3	3	3	5	0	0	0
2	1	7	1	0	0	0
0	0	10	5	0	0	0
6	3	1	0	0	0	0
4	3	0	0	0	0	0
0	4	0	2	0	0	0

Seven lines are required to cover all of the zeroes, and so a zero-cost assignment (shown by boxed elements) is possible and therefore optimal.

i	$->$	j
GEORGE	$->$	BACKSTROKE
DON	$->$	BREASTSTROKE
FRED	$->$	BUTTERFLY
ED	$->$	FREESTYLE
ALAN	$->$	dummy 5
BEN	$->$	dummy 6
CARL	$->$	dummy 7

Minimum Cost $=251$
Alan, Ben, and Carl are not given positions on the relay team. If all swimmers were to perform at their best level, the total time would be 251 seconds. There are no meaningful alternate optimal solutions (except that idle swimmers could be assigned other "dummy" tasks, e.g., ALAN -> dummy 6, etc.)

56:171 Operations Research
Homework \#6 Solutions -- Fall 2001

1. Integer LP Model A court decision has stated that the enrollment of each high school in Metropolis be at least 20% black. The numbers of black and white high school students in each of the city's five school districts are:

District	Whites	Blacks
1	80	30
2	70	5
3	90	10
4	50	40
5	60	30

The distance (in miles) that a student in each district must travel to each high school is:

District	HS\#1	HS\#2
1	1.0	2.0
2	0.5	1.7
3	0.8	0.8
4	1.3	0.4
5	1.5	0.6

School board policy requires that all students in a given district must attend the same school, and that each school must have an enrollment of at least 150 students. Formulate an integer LP to determine how to minimize the total distance that Metropolis students must travel to high school, and use LINDO (or other ILP solver) to compute the optimal solution.

Decision Variables :

$$
\mathrm{Xij}=\left\{\begin{array}{l}
1, \text { if students from district } \mathrm{i} \text { are sent to school } \mathrm{j} \\
0, \text { otherwise }
\end{array}\right.
$$

Integer Programming Formulation :

The objective is to minimize the total distance students travel (which would be equivalent to minimizing the average distance traveled), so the coefficient of Xij is the population of district i times the distance from district i to school j.

```
Min {(80+30)*1.0} X11 + {(70+5)*0.5} X21 + {(90+10)*0.8} X31
    + {(50+40)*1.3} X41 + {(60+30)*1.5} X51
    + {(80+30)*2.0} X12 + {(70+5)*1.7} X22 + {(90+10)*0.8} X32
    + {(50+40)*0.4} X42 + {(60+30)*0.6} X52
s.t.
Minimum enrollment at schools:
    (80+30) X11+(70+5)X21+(90+10)X31+(50+40)X41+(60+30)X51\geq150
    (80+30) X12 + (70+5) X22 + (90+10) X32+(50+40) X42 + (60+30) X52 \geq 150
```

Minimum proportion of black students in each school:
$\frac{30 \mathrm{X} 11+5 \mathrm{X} 21+10 \mathrm{X} 31+40 \mathrm{X} 41+30 \mathrm{X} 51}{(80+30) \mathrm{X} 11+(70+5) \mathrm{X} 21+(90+10) \mathrm{X} 31+(50+40) \mathrm{X} 41+(60+30) \mathrm{X} 51} \geq 0.2$

$$
\frac{30 \mathrm{X} 12+5 \mathrm{X} 22+10 \mathrm{X} 32+40 \mathrm{X} 42+30 \mathrm{X} 52}{(80+30) \mathrm{X} 12+(70+5) \mathrm{X} 22+(90+10) \mathrm{X} 32+(50+40) \mathrm{X} 42+(60+30) \mathrm{X} 52} \geq 0.2
$$

"Multiple choice" constraints: Each district is to be assigned to one of the two schools:
$\mathrm{X} 11+\mathrm{X} 12=1, \mathrm{X} 21+\mathrm{X} 22=1, \mathrm{X} 31+\mathrm{X} 32=1, \mathrm{X} 41+\mathrm{X} 42=1, \mathrm{X} 51+\mathrm{X} 52=1$

LINDO input

```
Min 110 X11 + 37.5 X21 + 80 X31 + 117 X41 + 135 X51
+ 220 X12 + 127.5 X22 + 80 X32 + 36 X42 + 54 X52
    s.t.
    110 X11 + 75 X21 + 100 X31 + 90 X41 + 90 X51 >= 150
    110 X12 + 75 X22 + 100 X32 + 90 X42 + 90 X52 >= 150
    8X11 - 10X21 - 10X31 + 22X41 + 12X51 >= 0
    8X12 - 10X22 - 10X32 + 22X42 + 12X52 >= 0
    X11 + X12 = 1
    X21 + X22 = 1
    X31 + X32 = 1
    X41 + X42 = 1
    X51 + X52 = 1
    END
    INTE 10
(Here, zero/one variable (binary) restrictions are imposed by the command INTE)
```


LINDO output

NO. ITERATIONS= 7
BRANCHES $=0$ DETERM. $=1.000 \mathrm{E} 0$

Optimal decision :

Students from district 1 are sent to school 1,
Students from district 2 are sent to school 1,

Students from district 3 are sent to school 2,
Students from district 4 are sent to school 1,
Students from district 5 are sent to school 2.
Corresponding total distance traveled by students is 398.5 miles(which is an average of 0.857 miles for each of the 465 students, ranging from 0.5 mile to 1.3 mile.)

20202020

2. Integer LP Model A company sells seven types of boxes, ranging in volume from 17 to 33 cubic feet. The demand and size of each box are given below.

Product\#:	1	2	3	4	5	6	7
Size	33	30	26	24	19	18	17
Demand	400	300	500	700	200	400	200

The variable cost (in dollars) of producing each box is equal to the box's volume. A fixed cost of $\$ 1000$ is incurred to produce any of a particular box. If the company desires, demand for a box may be satisfied by a box of larger size. Formulate an integer LP model to minimize the cost of meeting the demand for boxes, and solve, using LINDO (or another ILP solver).

Decision Variables :

$\mathrm{Xi}=$ the number of type i boxes produced.
$\mathrm{Yi}=\left\{\begin{array}{l}1, \text { if company produces type i box } \\ 0, \text { otherwise }\end{array}\right.$

LINDO input

```
Min 33 X1 + 30 X2 + 26 X3 + 24 X4 + 19 X5 + 18 X6 + 17 X7
    +1000 Y1 + 1000 Y2 + 1000 Y3 + 1000 Y4 + 1000 Y5 + 1000 Y6 + 1000 Y7
Subject to
X1 >= 400
X1 + X2 >= 700
X1 + X2 + X3 >= 1200
X1 + X2 + X3 + X4 >= 1900
X1 + X2 + X3 + X4 + X5 >= 2100
X1 + X2 + X3 + X4 + X5 + X6 >= 2500
X1 + X2 + X3 + X4 + X5 + X6 + X7 >= 2700
X1 - 2700 Y1 <= 0
X2 - 2300 Y2 <= 0
X3 - 2000 Y3 <= 0
X4 - 1500 Y4 <= 0
X5 - 800 Y5 <= 0
X6 - 600 Y6 <= 0
X7 - 200 Y7 <= 0
end
inte Y1
inte Y2
inte Y3
inte Y4
inte Y5
inte Y6
inte Y7
```


LINDO output

```
LP OPTIMUM FOUND AT STEP 60
OBJECTIVE VALUE = 68845.2500
FIX ALL VARS.( 2) WITH RC > 0.000000E+00
SET Y2 TO <= 0 AT 1, BND= -0.7047E+05 TWIN=-0.7057E+05 70
SET Y3 TO >= 1 AT 2, BND=-0.7122E+05 TWIN=-0.7372E+05 73
```


NEW INTEGER SOLUTION OF 72100.0000 AT BRANCH 18 PIVOT 113
BOUND ON OPTIMUM: 69697.10

DELETE Y4 AT LEVEL 3
DELETE Y3 AT LEVEL 2
DELETE Y2 AT LEVEL 1
ENUMERATION COMPLETE. BRANCHES $=20$ PIVOTS $=119$
LAST INTEGER SOLUTION IS THE BEST FOUND
RE-INSTALLING BEST SOLUTION...
OBJECTIVE FUNCTION VALUE

1) 72100.00

VARIABLE	VALUE	REDUCED COST
Y1	1.000000	1000.000000
Y2	0.000000	-5900.000000
Y3	1.000000	1000.000000
Y4	1.000000	1000.000000
Y5	1.000000	1000.000000
Y6	0.000000	400.000000
Y7	0.000000	600.000000
X1	$\mathbf{7 0 0 . 0 0 0 0 0 0}$	0.000000
X2	0.000000	0.000000
X3	500.000000	0.000000
X4	$\mathbf{7 0 0 . 0 0 0 0 0 0}$	0.000000
X5	800.000000	0.000000
X6	0.000000	0.000000
X7	0.000000	0.000000
ROW		
2)	300.000000	DUAL PRICES
3)	0.000000	0.000000
4)	0.000000	-7.000000
5)	0.000000	-2.000000
6)	600.000000	-5.000000
7)	200.000000	0.000000
8)	0.000000	0.000000
9)	2000.000000	-19.000000
		0.000000

$10)$	0.000000	3.000000
$11)$	1500.000000	0.000000
$12)$	800.000000	0.000000
$13)$	0.000000	0.000000
$14)$	0.000000	1.000000
$15)$	0.000000	2.000000

Optimal decision :

700 type 1, 500 type 3, 700 type 4, and 800 type 5 boxes are required to produce to meet the demand. The corresponding total cost is $\$ 72,100$

Note: another formulation might define Y as before, but Z instead of X :
$Z_{i j}=$ fraction of type i boxes used to satisfy need for type j boxes
$\mathrm{Ci}=$ cost of box of type i
$\mathrm{Dj}=$ demand for box of type j
$\mathrm{Fi}=$ setup cost for box type i ($\$ 1000$ in this instance)

$$
\begin{gathered}
\text { Minimize } F_{i} \sum_{i=1}^{7} Y_{i}+\sum_{i=1}^{7} C_{i} \sum_{j=i}^{7} D_{j} Z_{i j} \\
\text { s.t. } \quad \sum_{j=i}^{7} Z_{i j} \leq 7 Y_{i}, \quad i=1, \ldots 7 \text { or (better) } Z_{i j} \leq Y_{i} \quad \forall i \& j \\
\sum_{i=1}^{j} Z_{i j}=1, \quad j=1,2, \ldots 7 \\
Y_{i} \in\{0,1\}, Z_{i j} \geq 0 \quad \forall \mathrm{i}, \mathrm{j}
\end{gathered}
$$

This model is essentially the same as that of the uncapacitated (or "simple") plant location problem.
30303030
3. Integer LP Model WSP Publishing sells textbooks to college students. WSP has two sales representatives available to assign to the seven-state area (states A through G):

The number of college students (in thousands) in each area is indicated in the figure above. Each sales representative must be assigned to two adjacent states. For example, a sales rep could be assigned to A \& B, but not A\&D. WSP's goal is to maximize the number of total students in the states assigned to the sales reps. Formulate an integer LP whose solution will tell WSP where to assign the sales reps. Use LINDO (or another ILP solver) to compute the optimal assignment.

Decision Variables :

$X i=\left\{\begin{array}{l}1, \text { if state } i \text { is served by a sales representative } \\ 0, \text { otherwise }\end{array}\right.$
$\mathrm{Yij}=\left\{\begin{array}{l}1, \text { if an sales representative is assigned to } \mathrm{i} \& \mathrm{j} \\ 0, \text { otherwise }\end{array}\right.$
Integer Programming Formulation :
The objective is to maximize the number of total students in the states assigned to the sales representatives.

$$
\text { Max } 34 \mathrm{Xa}+29 \mathrm{Xb}+42 \mathrm{Xc}+21 \mathrm{Xd}+56 \mathrm{Xe}+18 \mathrm{Xf}+21 \mathrm{Xg}
$$

s.t.

Xj must be zero unless at least one representative is assigned to state $i \& j$.

```
Xa <= Yab + Yac
Xb <= Yab + Ybc + Ybd + Ybe
Xc <= Yac + Ybc + Ycd
Xd <= Ybd + Ycd + Yde + Ydf + Ydg
Xe <= Ybe + Yde + Yef
Xf <= Ydf + Yef + Yfg
Xg <= Ydg + Yfg
```

Two sales representatives are to be assigned:

```
Yab + Yac + Ybc + Ybd + Ybe + Ycd + Yde + Ydf + Ydg + Yef + Yfg = 2
```


LINDO input

```
Max 34 Xa + 29 Xb + 42 Xc + 21 Xd + 56 Xe + 18 Xf + 21 Xg
Subject to
Xa - Yab - Yac <= 0
Xb - Yab - Ybc - Ybd - Ybe <= 0
Xc - Yac - Ybc - Ycd <= 0
Xd - Ybd - Ycd - Yde - Ydf - Ydg <= 0
Xe - Ybe - Yde - Yef <= 0
Xf - Ydf - Yef - Yfg <= 0
Xg - Ydg - Yfg <= 0
Yab + Yac + Ybc + Ybd + Ybe + Ycd + Yde + Ydf + Ydg + Yef + Yfg = 2
```

```
end
inte 18
```

(Here, zero/one variable (binary) restrictions are imposed by the command INTE)

LINDO output

```
LP OPTIMUM FOUND AT STEP 30
    OBJECTIVE VALUE = 161.000000
    NEW INTEGER SOLUTION OF 161.000000 AT BRANCH O PIVOT 30
    RE-INSTALLING BEST SOLUTION...
        OBJECTIVE FUNCTION VALUE
            1) 161.0000
    VARIABLE
                VALUE
                1.000000
                REDUCED COST
                        -34.000000
                        -29.000000
                        -42.000000
                                -21.000000
                                -56.000000
                                -18.000000
                                -21.000000
                0.000000 0.000000
                1.000000 0.000000
                0.000000 0.000000
                0.000000 0.000000
                1.000000 0.000000
                0.000000 0.000000
                0.000000 0.000000
                0.000000 0.000000
                0.000000 0.000000
                0.000000 0.000000
                0.000000 0.000000
                    SLACK OR SURPLUS DUAL PRICES
                0.000000 0.000000
                0.000000 0.000000
                0.000000 0.000000
                        0.000000 0.000000
                        0.000000 0.000000
                0.000000 0.000000
                        0.000000 0.000000
                        0.000000 0.000000
NO. ITERATIONS=
                            30
    BRANCHES= 0 DETERM.= 1.000E 0
```


Optimal decision :

One sales representative is assigned to \mathbf{A} and \mathbf{C}, and another sales representative is assigned to \mathbf{B} and \mathbf{E}. This plan maximizes the number of total students in the states assigned to the sales reps, namely $\mathbf{1 6 1}$ thousand.

1. A Markov chain has the transition probability matrix

$$
P=\left[\begin{array}{ccc}
0 & 0.3 & 0.7 \\
0.9 & 0.1 & 0 \\
0.2 & 0 & 0.8
\end{array}\right]
$$

a. Draw the transition diagram, with probabilities indicated.

Solution:

b. Find the probability distributions of the state for the first five steps, given that it begins in state 3 .

Solution:

$P^{2}=\left[\begin{array}{lll}0.41 & 0.03 & 0.56 \\ 0.09 & 0.28 & 0.63 \\ 0.16 & 0.06 & 0.78\end{array}\right], P^{3}=\left[\begin{array}{ccc}0.139 & 0.126 & 0.735 \\ 0.378 & 0.055 & 0.567 \\ 0.21 & 0.054 & 0.736\end{array}\right], P^{4}=\left[\begin{array}{ccc}0.2604 & 0.0543 & 0.6853 \\ 0.1629 & 0.1189 & 0.7182 \\ 0.1958 & 0.0684 & 0.7858\end{array}\right], P^{5}=\left[\begin{array}{ccc}0.1859 & 0.08355 & 0.7305 \\ 0.2507 & 0.06076 & 0.6886 \\ 0.2087 & 0.06558 & 0.7257\end{array}\right]$
The probability distributions are given by the $3^{\text {rd }}$ row of the matrices $\mathrm{P}, \mathrm{P}^{2}, \ldots \mathrm{P}^{5}$.
c. Find the expected first passage time from state 3 to state 1 .

Solution:

$$
M=\left[\begin{array}{ccc}
4.833 & 15 & 1.905 \\
1.111 & 14.5 & 3.016 \\
5 & 20 & 1.381
\end{array}\right]
$$

So the expected number of stages required for the system to reach state 1 , given that it begins in state 3 , is $\mathrm{m}_{31}=5$.
d. What property does this Markov chain have that guarantees the existence of a steady state probability
distribution?
Solution: This is a regular Markov chain, indicated by the fact that the elements of P^{2} are strictly postive.
e. Write the equations which must be solved in order to compute the steady state distribution.

Solution:

$$
\pi=\pi P, i . e .,\left\{\begin{array}{l}
\pi_{1}=0.9 \pi_{2}+0.2 \pi_{2} \\
\pi_{2}=0.3 \pi_{1}+0.1 \pi_{2} \\
\pi_{3}=0.7 \pi_{1}+0.8 \pi_{3}
\end{array}\right.
$$

(or any two of the preceding equations), and the "normalizing" equation

$$
\pi_{1}+\pi_{2}+\pi_{3}=1
$$

f. What is the steady state probability distribution?

Solution: The solution of the system of equations in (e) is

$$
\left\{\begin{array}{l}
\pi_{1}=0.2069 \\
\pi_{2}=0.06897 \\
\pi_{3}=0.7241
\end{array}\right.
$$

2. An office has two printers, which are very unreliable. It has been observed that when both are working in the morning, there is a 30% chance that one will fail by evening, and a 10% chance that both will fail. If it happens that only one printer is working in the morning, there is a 20% chance that it will fail by evening. . Any printers that fail during the day are picked up by a repairman the next morning, and returned the following morning. (Assume that he can work on more than one printer at a time.)

Model this situation as a Markov chain with the state being the number of failed printers observed in the morning after the repairman has returned any printers but before any failures have occurred. The states then, are $0,1, \& 2$.
a. Draw the transition diagram, with probabilities indicated.

Solution:

b. Write the transition probability matrix.

Solution:

$$
P=\left[\begin{array}{ccc}
0.6 & 0.3 & 0.1 \\
0.8 & 0.2 & 0 \\
1 & 0 & 0
\end{array}\right]
$$

c. What is the probability distribution of the number of failed printers on Wednesday evening if both printers are working on Monday morning?

Solution:

$$
P^{3}=\left[\begin{array}{ccc}
0.672 & 0.258 & 0.07 \\
0.688 & 0.248 & 0.064 \\
0.7 & 0.24 & 0.06
\end{array}\right]
$$

and so, if both printers are working Monday morning (state 0), there is 67.2% probability that 0 printers are failed, 25.8% probability that 1 printer is failed, and 7% probability that 2 printers are in the failed condition on Wednesday evening (after 3 days).
d. What property does this Markov chain have that guarantees the existence of a steady state probability distribution?
Solution: This Markov chain is regular, as evidenced by the fact that P^{3} has strictly positive elements. e. Write the equations which must be solved in order to compute the steady state distribution.

Solution:

$$
\pi=\pi P \Rightarrow\left\{\begin{array}{l}
\pi_{1}=0.6 \pi_{1}+0.8 \pi_{2}+\pi_{3} \\
\pi_{2}=0.3 \pi_{1}+0.2 \pi_{2} \\
\pi_{3}=0.1 \pi_{1}
\end{array}\right.
$$

and $\pi_{1}+\pi_{2}+\pi_{3}=1$
f. What is the steady state probability distribution?

Solution:

$$
\left\{\begin{array}{l}
\pi_{1}=0.678 \\
\pi_{2}=0.2542 \\
\pi_{3}=0.0678
\end{array}\right.
$$

3. (s,S) Model of Inventory System A periodic inventory replenishment system with reorder point $\mathbf{s}=2$ and orderup to level $\mathbf{S}=7$ is modeled. At the end of each period of demand (day), the inventory is tallied, and if the level is less than or equal to the reorder point (s), enough is ordered (\& immediately received) so as to bring the inventory level up to S. The probability distribution is discrete and Poisson, with expected demand $2 /$ day.

The state of the system is the inventory position: if no backorders are permitted, as in this case, this is the stock-on-hand. (Otherwise it is the stock-on-hand if nonnegative, and the number of unfilled orders if negative.)

The following output was obtained using the MARKOV workspace (APL code) which is available from the URL: http://asrl.een.uiowa.edu/dbricker/APL_software.html
a. Over a long period of time, what is the percent of the days in which you would expect there to be a stockout (zero inventory)? Solution: $\pi_{0}=0.09024$
b. What will be the average end-of-day inventory level? Solution: $\sum_{i=0}^{7} i \pi_{i}=3.443$
c. How often (i.e. once every how many days?) will the inventory be full at the end of the day?

Solution: average interval between visits to state 7 is $m_{77}=\frac{1}{\pi_{7}}=19.17$ days
d. How often will the inventory be restocked? Solution: The probability that the inventory is re-stocked is $\sum_{i=0}^{2} \pi_{i}=0.09024+0.09892+0.1442=0.3333$, which implies that the inventory is restocked, on average, once every three days.
e. If the shelf is full Monday morning, what is the probability that a replenishment occurs Friday evening?

Solution: The probability that the system is in states 0 , 1 , or 2 after 5 stages, given that it begins in state 7 , is $\sum_{j=0}^{2} p_{7, j}^{(5)}=0.08798+0.09716+0.1428=0.3279$. Note that this is very nearly the same as the answer to (d)!
f. If the shelf is full Monday morning, what is the probability that the first stockout occurs Friday evening?

Solution: The first-passage probability $f_{7,0}^{(5)}=0.07153$
g. What is the expected number of days, starting with a full inventory, until a stockout occurs?

Solution: $m_{7,0}=11.08$
h. Starting with a full inventory, what is the expected number of stockouts during the first 30 days? What is the expected number of times that the inventory is restocked? Solution: $\sum_{n=1}^{30} p_{7,0}^{(n)}=2.619$
i. What is the average daily cost of this inventory system--including holding cost of $\$ 0.50 /$ unit, replenishment cost of $\$ 10$ per replenishment, and shortage penalties of $\$ 5$ per stockout (regardless of the unsatisfied demand)?
Solution: holding cost $0.50 \times \sum_{i=0}^{7} i \pi_{i}=1.721 \quad \$ /$ day
replenishment cost: $10 \times \sum_{i=0}^{2} \pi_{i}=3.3333 \$ /$ day
shortage penalties: $5 \times \pi_{0}=0.4512 \$ /$ day
The sum is $5.505 \$ /$ day.
If the shortage penalty depended upon the magnitude of the unsatisfied demand, the computation would be somewhat more complicated!

Transition Probability Matrix

| | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 1 | 0.004534 | 0.01203 | 0.03609 | 0.09022 | 0.1804 | 0.2707 | 0.2707 | 0.1353 |
| 2 | 0.004534 | 0.01203 | 0.03609 | 0.09022 | 0.1804 | 0.2707 | 0.2707 | 0.1353 |
| 3 | 0.004534 | 0.01203 | 0.03609 | 0.09022 | 0.1804 | 0.2707 | 0.2707 | 0.1353 |
| 4 | 0.3233 | 0.2707 | 0.2707 | 0.1353 | 0 | 0 | 0 | 0 |
| 5 | 0.1429 | 0.1804 | 0.2707 | 0.2707 | 0.1353 | 0 | 0 | 0 |
| 6 | 0.05265 | 0.09022 | 0.1804 | 0.2707 | 0.2707 | 0.1353 | 0 | 0 |
| 7 | 0.01656 | 0.03609 | 0.09022 | 0.1804 | 0.2707 | 0.2707 | 0.1353 | 0 |
| 8 | 0.004534 | 0.01203 | 0.03609 | 0.09022 | 0.1804 | 0.2707 | 0.2707 | 0.1353 |

	Cost Vector	
	State	Cost
1	SOH=zero	10.0
2	SOH=one	10.5
3	SOH=two	11.0
4	SOH=three	1.5
5	SOH=four	2.0
6	SOH=five	2.5
7	SOH=six	3.0
8	SOH=seven	3.5

	5-th Power							
	1	2	3	4	5	6	7	8
1	0.08798	0.09716	0.1428	0.1681	0.1703	0.1606	0.1212	0.05186
2	0.08798	0.09716	0.1428	0.1681	0.1703	0.1606	0.1212	0.05186
3	0.08798	0.09716	0.1428	0.1681	0.1703	0.1606	0.1212	0.05186
4	0.09102	0.09849	0.1418	0.163	0.164	0.1598	0.126	0.05585
5	0.09283	0.1009	0.1456	0.1667	0.1649	0.156	0.1203	0.0527
6	0.09241	0.1013	0.1473	0.1699	0.1674	0.155	0.1166	0.05016
7	0.08993	0.09931	0.1457	0.1702	0.1699	0.1575	0.1174	0.04999
8	0.08798	0.09716	0.1428	0.1681	0.1703	0.1606	0.1212	0.05186

Steady State Distribution

i	state	P\{i\}
1	SOH=zero	0.09024
2	SOH=one	0.09892
3	SOH=two	0.1442
4	SOH=three	0.1675
5	SOH=four	0.1678
6	SOH=five	0.1585
7	SOH=six	0.1207
8	SOH=seven	0.05217

Expected no. of visits during first $\mathbf{3 0}$ stages

	1	2	3	4	5	6	7	8
1	2.619	2.886	4.236	4.982	5.073	4.854	3.73	1.621
2	2.619	2.886	4.236	4.982	5.073	4.854	3.73	1.621
3	2.619	2.886	4.236	4.982	5.073	4.854	3.73	1.621
4	2.888	3.085	4.382	4.945	4.879	4.671	3.59	1.56
5	2.764	3.043	4.428	5.089	4.974	4.613	3.547	1.542
6	2.705	2.987	4.384	5.123	5.1	4.695	3.489	1.517
7	2.662	2.936	4.31	5.067	5.129	4.82	3.585	1.49
8	2.619	2.886	4.236	4.982	5.073	4.854	3.73	1.621

First Visit Probabilities to State 1 from State 8

n	c
1	0.004534
2	0.07452
3	0.1048
4	0.08298
5	0.07153
6	0.06623
7	0.05974
8	0.05352
9	0.04818
10	0.0434
11	0.03905
12	0.03514
13	0.03163
14	0.02847
15	0.02562

Mean First Passage Time Matrix

	1	2						8
			3	4	5	6	7	
1	11.08	10.11	6.936	5.746	5.373	5.305	7.086	19.17
2	11.08	10.11	6.936	5.746	5.373	5.305	7.086	19.17
3	11.08	10.11	6.936	5.746	5.373	5.305	7.086	19.17
4	8.094	8.101	5.922	5.969	6.529	6.462	8.243	20.32
5	9.472	8.527	5.604	5.104	5.959	6.824	8.605	20.69
6	10.12	9.087	5.911	4.903	5.209	6.311	9.08	21.16
7	10.6	9.609	6.419	5.239	5.038	5.518	8.287	21.66
8	11.08	10.11	6.936	5.746	5.373	5.305	7.086	19.17

1. A factory has a buffer with a capacity of $4 \mathrm{~m}^{3}$ for temporarily storing waste produced by the factory. Each week the factory produces $\mathrm{k} \mathrm{m}^{3}$ waste with a probability of p_{k}, where $\mathrm{p}_{0}=1 / 8, \mathrm{p}_{1}=1 / 2, \mathrm{p}_{2}=1 / 4$, and $\mathrm{p}_{3}=1 / 8$. If the amount of waste produced in one week exceeds the remaining capacity of the buffer, the excess is specially removed at a cost of $\$ 100$ per m^{3}. At the end of each week, there is a regular opportunity to remove waste from the storage buffer at a fixed cost of $\$ 50$ and a variable cost of $\$ 10$ per m^{3}. The following policy is used. If at the end of the week the storage buffer contains more than $2 \mathrm{~m}^{3}$ the buffer is emptied; otherwise no waste is removed. Determine
a) the frequency of overflows
b) the frequency that the buffer is emptied
c) the long-run average cost per week

Solution: Define six states: $\mathrm{X}_{\mathrm{n}} \in\{0,1,2,3,4,5\}$
where the state is the volume of waste at the end of the week before removing any excess. Note that the description of the system implies that this volume will never exceed $5 \mathrm{~m}^{3}$, since the week will begin with no more than $2 \mathrm{~m}^{3}$, and the maximum amount of waste generated is $3 \mathrm{~m}^{3}$! The transition probability matrix is

$$
P=\left[\begin{array}{llllll}
0.125 & 0.5 & 0.25 & 0.125 & 0 & 0 \\
0 & 0.125 & 0.5 & 0.25 & 0.125 & 0 \\
0 & 0 & 0.125 & 0.5 & 0.25 & 0.125 \\
0.125 & 0.5 & 0.25 & 0.125 & 0 & 0 \\
0.125 & 0.5 & 0.25 & 0.125 & 0 & 0 \\
0.125 & 0.5 & 0.25 & 0.125 & 0 & 0
\end{array}\right]
$$

Note that if the system is in states 3,4 , or 5 , the storage buffer is empty at the beginning of the next week, and so the transition probabilities are identical to those of state 0 .
The results of the computation of the steadystate distribution and mean first passage times are shown below:
Steady State Distribution

i	state	$P\{i\}$
1	ZERO	0.05724
2	ONE	0.2617
3	TWO	0.2804
4	THREE	0.2629
5	FOUR	0.1028
6	FIVE	0.03505

Mean First Passage Time Matrix

	0	1	2	3	4	5
0	17.47	2.571	2.933	3.804	9.727	28.53
1	19.27	3.821	2.4	3.271	8.545	28
2	18.61	3.714	3.567	2.773	8.091	25.6
3	17.47	2.571	2.933	3.804	9.727	28.53
4	17.47	2.571	2.933	3.804	9.727	28.53
5	17.47	2.571	2.933	3.804	9.727	28.53

a. The frequency of overflows is the mean recurrence time $\mathrm{m}_{55}\left(=1 / \pi_{5}=28.53\right)$ for state 5 (which is the only state in which an overflow has occurred.) That is, an overflow occurs, on average, once every 28.53 weeks.
b. The frequency with which the buffer is emptied will be the reciprocal of the steadystate probability of states in which the buffer is emptied, namely states $3,4, \& 5$. Thus,

$$
\sum_{i=3}^{5} \pi_{i}=0.2629+0.1028+0.03505=0.4007
$$

so that the buffer is emptied, on average, once every 2.496 weeks.
c. The long-run average cost per week is

$$
\begin{aligned}
80 \pi_{3}+90 \pi_{4}+190 \pi_{5} & =(80 \times 0.2629)+(90 \times 0.1028)+(190 \times 0.03505) \\
& =36.94 \\
& * * * * * * * * * * * * *
\end{aligned}
$$

2. For simplicity, suppose that fresh blood obtained by a hospital will spoil if it is not transfused within five days. The hospital receives 100 pints of fresh blood daily from a local blood bank. Two policies are possible for determining the order in which blood is transfused. The following table gives the probabilities of transfusion for blood of various ages under each policy:

	0 day old	1 day old	2 days old	3 days old	4 days old
Policy 1	10%	20%	30%	40%	50%
Policy 2	50%	40%	30%	20%	10%

For example, under policy 1, blood has a 10% chance of being transfused during its first day at the hospital. Under policy 2, four-day-old blood has a 10% chance of being transfused.
a. A FIFO (first in, first out) blood-issuing policy issues "old" blood first, whereas a LIFO (last in, first out) policy issues "young" blood first. Which policy above represents a LIFO policy, and which represents a FIFO policy?
Solution: Policy \#1 is FIFO and Policy \#2 is LIFO.
Define Markov chain models with seven states, where the state is determined when first obtained and every 24 hours thereafter.

State	Description
$\mathbf{1}$	0 days old
$\mathbf{2}$	1 day old
$\mathbf{3}$	2 days old
$\mathbf{4}$	3 days old
$\mathbf{5}$	4 days old
$\mathbf{6}$	Transfused
$\mathbf{7}$	Spoiled

States $6 \& 7$ are absorbing states, and states $1-5$ are transient.
FIFO policy (\#1). The transition probability matrix is $\mathrm{P}=$

	1	2	3	4	5	6	7
1	0	0.9	0	0	0	0.1	0
2	0	0	0.8	0	0	0.2	0
3	0	0	0	0.7	0	0.3	0
4	0	0	0	0	0.6	0.4	0
5	0	0	0	0	0	0.5	0.5

$$
\begin{array}{l|lllllll}
6 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
7 & 0 & 0 & 0 & 0 & 0 & 0 & 1
\end{array}
$$

The submatrices Q and R are:

$$
Q=\left[\begin{array}{lllll}
0 & 0.9 & 0 & 0 & 0 \\
0 & 0 & 0.8 & 0 & 0 \\
0 & 0 & 0 & 0.7 & 0 \\
0 & 0 & 0 & 0 & 0.6 \\
0 & 0 & 0 & 0 & 0
\end{array}\right] \& R=\left[\begin{array}{ll}
0.1 & 0 \\
0.2 & 0 \\
0.3 & 0 \\
0.4 & 0 \\
0.5 & 0.5
\end{array}\right]
$$

Then

$$
E=(I-Q)^{-1}=\left[\begin{array}{ccccc}
1 & -0.9 & 0 & 0 & 0 \\
0 & 1 & -0.8 & 0 & 0 \\
0 & 0 & 1 & -0.7 & 0 \\
0 & 0 & 0 & 1 & -0.6 \\
0 & 0 & 0 & 0 & 1
\end{array}\right]^{-1}=\left[\begin{array}{lllll}
1 & 0.9 & 0.72 & 0.504 & 0.3024 \\
0 & 1 & 0.8 & 0.56 & 0.336 \\
0 & 0 & 1 & 0.7 & 0.42 \\
0 & 0 & 0 & 1 & 0.6 \\
0 & 0 & 0 & 0 & 1
\end{array}\right]
$$

and

$$
A=E R=\left[\begin{array}{ll}
0.8488 & 0.1512 \\
0.832 & 0.168 \\
0.79 & 0.21 \\
0.7 & 0.3 \\
0.5 & 0.5
\end{array}\right]
$$

The first-passage probabilities $f_{1,6}^{(n)}, n=1,2,3,4,5,6$ are

$$
\begin{array}{ll}
\mathrm{n} & f_{1,6}^{(n)} \\
1 & 0.1 \\
2 & 0.18 \\
3 & 0.216 \\
4 & 0.2016 \\
5 & 0.1512 \\
6 & 0
\end{array}
$$

b. For FIFO policy (\#1), the probability that a new pint of blood (state 0) will eventually spoil (reach state 7) is $\mathrm{a}_{17}=15.12 \%$
c. The average number of pints of blood in inventory may be found from the matrix E: on any typical day, 100% of the 100 new pints are in inventory, 90% of the one-day-old pints, 72% of the two-day-old pints, 50.4% of the three-day-old pints, and 30.24% of the four-day-old pints. Thus, the average inventory will be

$$
100+90+72+50.4+30.24=342.6
$$

d. The average age of transfused blood is the expected first passage time, i.e., $\sum_{n=1}^{5} n \times f_{1,6}^{(n)}=2.67$ days.

LIFO policy (\#2). The transition probability matrix is $\mathrm{P}=$

	1	2	3	4	5	6	7
1	0	0.5	0	0	0	0.5	0
2	0	0	0.6	0	0	0.4	0
3	0	0	0	0.7	0	0.3	0
4	0	0	0	0	0.8	0.2	0
5	0	0	0	0	0	0.1	0.9
6	0	0	0	0	0	1	0
7	0	0	0	0	0	0	1

The submatrices Q and R are:

$$
Q=\left[\begin{array}{lllll}
0 & 0.5 & 0 & 0 & 0 \\
0 & 0 & 0.6 & 0 & 0 \\
0 & 0 & 0 & 0.7 & 0 \\
0 & 0 & 0 & 0 & 0.8 \\
0 & 0 & 0 & 0 & 0
\end{array}\right] \& R=\left[\begin{array}{ll}
0.5 & 0 \\
0.4 & 0 \\
0.3 & 0 \\
0.2 & 0 \\
0.1 & 0.9
\end{array}\right]
$$

Then

$$
E=(I-Q)^{-1}=\left[\begin{array}{ccccc}
1 & -0.5 & 0 & 0 & 0 \\
0 & 1 & -0.6 & 0 & 0 \\
0 & 0 & 1 & -0.7 & 0 \\
0 & 0 & 0 & 1 & -0.8 \\
0 & 0 & 0 & 0 & 1
\end{array}\right]^{-1}=\left[\begin{array}{lllll}
1 & 0.5 & 0.3 & 0.21 & 0.168 \\
0 & 1 & 0.6 & 0.42 & 0.336 \\
0 & 0 & 1 & 0.7 & 0.56 \\
0 & 0 & 0 & 1 & 0.8 \\
0 & 0 & 0 & 0 & 1
\end{array}\right]
$$

and

$$
A=E R=\left[\begin{array}{ll}
0.8488 & 0.1512 \\
0.6976 & 0.3024 \\
0.496 & 0.504 \\
0.28 & 0.72 \\
0.1 & 0.9
\end{array}\right]
$$

The first-passage probabilities $f_{1,6}^{(n)}, n=1,2,3,4,5,6$ are

$$
\begin{array}{ll}
\mathrm{n} & f_{1,6}^{(n)} \\
1 & 0.5 \\
2 & 0.2 \\
3 & 0.09 \\
4 & 0.042 \\
5 & 0.0168 \\
6 & 0
\end{array}
$$

The analysis of this policy is similar to the FIFO policy:
b. The probability that a new pint of blood will eventually spoil is $\mathrm{a}_{17}=15.12 \%$, which is the same as for the FIFO policy!
c. The average number of pints of blood in inventory is $100 \times(1.0+0.5+0.3+0.21+0.168)=217.8$
d. The average age of transfused blood is $1 \times 0.5+2 \times 0.2+3 \times 0.09+4 \times 0.042+5 \times 0.0168=1.422$ days

Summary

Policy	Probability of Spoilage	Average inventory	Average age of transfused blood
FIFO	15.12%	342.6	2.67 days
LIFO	15.12%	217.8	1.422 days

Surprisingly, the LIFO (last-in, first-out) policy performs just as well as the FIFO policy with respect to the probability of spoilage, and out-performs the FIFO policy with respect to the other two criteria!

56:171 Operations Research
 Homework \#9 Solutions -- Fall 2001

1. Discrete-time Markov Chain. (Based upon Exercise 4, §19.5, page 982 of text by W. Winston)

At the beginning of each year, my car is in good, fair, or broken-down condition. A good car will be good at the beginning of next year with probability 90%, fair with probability 5%, or broken-down with probability 5%. A fair car will be fair at the beginning of the next year with probability 70%, or broken-down with probability 30%. It costs $\$ 12000$ to purchase a good car; a fair car can be traded in for $\$ 5000$; and a broken-down car has no trade-in value and must immediately be replaced by a good car. It costs $\$ 1000$ per year to operate a good car and $\$ 2000$ to operate a fair car. Should I replace my car as soon as it becomes a fair car, or should I drive my car until it breaks down? Assume that the cost of operating a car during a year depends on the type of car on hand at the beginning of the year (after a new car, if any, arrives).

Define a Markov chain model with three states (Good, Fair, \& Broken-down). Assume, as implied by the problem statement, that break-down occurs only at the end of a year, and then (at the beginning of the next year) the brokendown car "must immediately be replaced".
Note: assume that state $1=$ Good, state $2=$ Fair, and state $3=$ Broken-down.

Policy A: Replace when car has broken down:

a. Draw a diagram of the Markov chain and write down the transition probability matrix.

Solution:

b. Write down the equations which could be solved to obtain the steadystate probabilities.

Solution:

$$
\begin{gathered}
\pi=\pi P=\pi\left[\begin{array}{ccc}
0.9 & 0.05 & 0.05 \\
0 & 0.7 & 0.3 \\
0.9 & 0.05 & 0.05
\end{array}\right] \Rightarrow\left\{\begin{array}{l}
\pi_{1}=0.9 \pi_{1}+0.9 \pi_{3} \\
\pi_{2}=0.05 \pi_{1}+0.7 \pi_{2}+0.05 \pi_{3} \\
\pi_{3}=0.05 \pi_{1}+0.3 \pi_{2}+0.05 \pi_{3}
\end{array}\right. \\
\pi_{1}+\pi_{2}+\pi_{3}=1
\end{gathered}
$$

c. Solve the equations, either manually or using appropriate computer software.

Solution: $\pi=\left[\begin{array}{lll}0.7714, & 0.1429, & 0.08571\end{array}\right]$
d. Compute the average cost per year for the replacement policy.

Solution:

	π_{i}	C_{i}	$\pi_{i} \times C_{i}$	
1	GOOD	0.7714	1000	771.4
2	FAIR	0.1429	2000	285.7
3	BROKEN	0.08571	13000	1114

The average cost/period in steady state is $\$ 2171 /$ year
e. What is the expected time between break-downs?

Solution: $m_{33}=1 / \pi_{3}=1 / 0.08571=11.67$, i.e, 11.67 years

Policy B: Replace when car is in FAIR condition

a. Draw a diagram of the Markov chain and write down the transition probability matrix.

Solution:

b. Write down the equations which could be solved to obtain the steadystate probabilities.

Solution:

$$
\pi=\pi P \Rightarrow\left\{\begin{array}{l}
\pi_{1}=0.9 \pi_{1}+0.9 \pi_{2}+0.9 \pi_{3} \\
\pi_{2}=0.05 \pi_{1}+0.05 \pi_{2}+0.05 \pi_{3} \\
\pi_{3}=0.05 \pi_{1}+0.05 \pi_{2}+0.05 \pi_{3}
\end{array} \pi_{1}+\pi_{2}+\pi_{3}=1 .\right.
$$

c. Solve the equations, either manually or using appropriate computer software.

Solution: Since each row of P is identical, the solution is obviously $\pi=\left[\begin{array}{lll}0.9, & 0.05, & 0.05\end{array}\right]$
d. Compute the average cost per year for the replacement policy.

Solution:

i	State	π_{i}	C_{i}	$\pi_{i} \times C_{i}$
1	GOOD	0.9	1000	900
2	FAIR	0.05	8000	400
3	BROKEN	0.05	13000	650

The average cost/period in steady state is $\$ 1950 /$ year
Note that the cost for state 2 FAIR includes the replacement cost (12000) minus trade-in value (5000) plus the operating cost for the replacement car (1000)!
e. What is the expected time between break-downs?
Solution: The probability that the system leaves state 1 is 10%, so it will occur every 10 years
f. What replacement policy do you recommend?

Solution:

Policy	Average Cost $/$ Year
A: Replace when Broken-down	$\$ 2171$
B: Replace when in Fair condition	$\$ 1950$

The policy "Replace in FAIR condition" is lower in cost by $\$ 221 /$ year.
2. Continuous-time Markov Chain. In exercise 1, the Markov chain model assumes that break-down occurs only at the end of a year, and then (at the beginning of the next year) the broken-down car "must immediately be replaced" with a car in good condition. In fact, of course, the change in condition can occur at any time during the year, and a continuous-time Markov chain model would be a closer representation of reality. Let's assume that when my car breaks down, it takes me an average of 0.02 years (about 1 week) to find and purchase a replacement car (and that this delay has exponential distribution.) Again define a Markov chain model with three states (Good, Fair, \& Brokendown).
a. What should be the transition rates, so that the probability of a change of condition during a one-year period is in agreement with the probabilities given in exercise 1 ?

Hint: The cdf of the exponential distribution is

$$
F(t)=P\{\text { time to next event } \leq t\}=1-e^{-\lambda t}
$$

If in state 1 (good car) there is a 10% probability that the system has changed states during the next year, the transition rate λ_{1} should therefore satisfy

$$
F(1)=1-e^{-\lambda}=0.10
$$

The value of λ_{12} should be equal to the value of λ_{13} (since the transition probabilities p_{12} and p_{13} were each 5%), and $\lambda_{1}=\lambda_{12}+\lambda_{13}$, so $\lambda_{12}=\lambda_{13}=0.5 \lambda_{1}$. To get the transition rate λ_{31}, observe that the expected value of the length of time required to replace my broken-down car is $1 / \lambda_{31}=0.02$ years.
Solution: Reasoning as above, we obtain:

$$
\begin{aligned}
\mathrm{F}(1) & =1-\mathrm{e}^{-\lambda_{1}}=0.10 \Rightarrow \mathrm{e}^{-\lambda_{1}}=0.9 \Rightarrow \lambda_{1}=0.1053 \Rightarrow \lambda_{12}=\lambda_{13}=0.0526 \\
\mathrm{~F}(1) & =1-\mathrm{e}^{-\lambda_{2}}=0.3 \Rightarrow \mathrm{e}^{-\lambda_{2}}=0.7 \Rightarrow \lambda_{2}=0.3567 \\
1 / \lambda_{31} & =0.02 \mathrm{yr} \Rightarrow \lambda_{31}=50 / \mathrm{yr}
\end{aligned}
$$

Policy A: Replace only when broken.

b. Write the matrix of transition rates.

Solution: the transition rate matrix is

$$
\Lambda=\left[\begin{array}{ccc}
-0.1053 & 0.0526 & 0.0526 \\
0 & -0.3567 & 0.3567 \\
50 & 0 & -50
\end{array}\right]
$$

Note that the diagonal element in each row is chosen to be the negative of the sum of off-diagonal elements.
c. Write the set of equations that must be solved for a steadystate distribution.

Solution:

$$
\pi \Lambda=0 \Rightarrow\left\{\begin{array}{l}
-0.1053 \pi_{1}+50 \pi_{3}=0 \\
0.0526 \pi_{1}-0.3567 \pi_{2}=0 \\
0.0526 \pi_{1}+0.3567 \pi_{2}-50 \pi_{3}=0
\end{array}\right.
$$

and $\pi_{1}+\pi_{2}+\pi_{3}=1$
d. Find the steadystate distribution.

Solution: $\pi=[0.8699,0.1283,0.0018]$
e. What does this model predict will be my average operating cost/year (not including replacement costs)?

Solution: $(\$ 1000 / \mathrm{yr}) \pi_{1}+(\$ 2000 / \mathrm{yr}) \pi_{2}=\$ 1126.45 / \mathrm{yr}$
To compute the average replacement costs per year is not quite so simple. (We must multiply the replacement costs by the expected number of replacements/year, not by π_{3} (the fraction of the year spent in state 3). Let $T=$ average time between replacements. Then

$$
\pi_{3}=\frac{\text { average time from breakdown to replacement }}{\text { average length of time between replacements }}=\frac{0.02 y r}{T}
$$

What then is T? The number of replacements per year should then be $1 / T$.
Solution: $\mathrm{T}=\frac{0.02 \mathrm{yr}}{\pi_{3}}=\frac{0.02 \mathrm{yr}}{0.0018}=11.11 \mathrm{yr} \Rightarrow \frac{1}{\mathrm{~T}}=0.09 / \mathrm{yr}$
f. What average replacement cost per year is predicted by this model?

Solution: $\$ 12000 \times 0.09 / \mathrm{yr}=\$ 1080 / \mathrm{yr}$
Total cost per year with policy A: $\$ 1126 / \mathrm{yr}+\$ 1080 / \mathrm{yr}=\$ 2206 / \mathrm{yr}$

Policy B: Replace when in FAIR condition.

b. The transition rate matrix will be

$$
\Lambda=\left[\begin{array}{ccc}
-0.1053 & 0.0526 & 0.0526 \\
50 & -50 & 0 \\
50 & 0 & -50
\end{array}\right]
$$

c. The equations defining the steadystate distribution will be

$$
\pi \Lambda=\pi\left[\begin{array}{ccc}
-0.1053 & 0.0526 & 0.0526 \\
50 & -50 & 0 \\
50 & 0 & -50
\end{array}\right]=0 \Rightarrow\left\{\begin{array}{l}
-0.1053 \pi_{1}+50 \pi_{2}+50 \pi_{3}=0 \\
0.0526 \pi_{1}-50 \pi_{2}=0 \\
0.0526 \pi_{1}-50 \pi_{3}=0
\end{array}\right.
$$

$$
\text { and } \pi_{1}+\pi_{2}+\pi_{3}=1
$$

d. Find the steadystate distribution. Solution: $\pi=[0.9979,0.00105,0.00105]$
e. What does this model predict will be my average operating cost/year (not including replacement costs)?

Solution: $(\$ 1000 / \mathrm{yr}) \pi_{1}=\$ 997.90 / \mathrm{yr}$
f. What average replacement cost per year is predicted by this model?

Solution: As before, the fraction of the time spent replacing the automobile is equal to the ratio 0.02 year to the cycle length $\mathrm{T}: \quad \pi_{2}+\pi_{3}=\frac{0.02 y r}{T} \Rightarrow \frac{1}{T}=\frac{\pi_{2}+\pi_{3}}{0.02}=0.1050 / \mathrm{yr}$, i.e., average \# replacements/yr is 0.1050

The replacement cost when the system reaches state (2) FAIR differs from that in state (3) BROKEN, since a trade-in value is received. Since $\pi_{2}=\pi_{3}$, it appears that half of the replacements result in a trade-in allowance. And so average replacement cost/year will be
$(0.5 \times 0.1050 / \mathrm{yr} \times \$ 12000)+(0.5 \times 0.1050 / \mathrm{yr} \times[12000-\$ 5000])=\$ 997.50 / \mathrm{yr}$.
The total expected operating and replacement costs would therefore be $\$ 997.90+\$ 997.40=\$ 1995.40$.

Comparison of Policies:

Policy	Average Cost/Year
A: Replace when Broken-down	$\$ 2206$
B: Replace when in Fair condition	$\$ 1995$

As in exercise 1, Policy B (Replace when in FAIR or BROKEN state) is less costly (by about $\$ 211 / \mathrm{yr}$) than Policy A (Replace only when in BROKEN state), and the costs predicted by the continuous-time Markov chain model are only slightly higher than those predicted by the discrete-time Markov chain model.

1. Birth-death process (exercise 2, section 22.3 of text of Winston. Numerical values modified)

My home uses two light bulbs. On average, a light bulb lasts for 30 days (exponentially distributed). When a light bulb burns out, it takes me an average of 5 days (exponentially distributed) before I replace the bulb (one at a time!)

(rates are in failures/day)
a. Formulate a three-state birth-death model of this situation.

Solution: we may define the state of the system to be either the number of bulbs functioning or the number burned out. (In the diagram above, the state, i.e., "population", is the number of burned-out bulbs.) The failure rate of each bulb is the reciprocal of the average lifetime, i.e., $1 / 30$ per day.
b. Determine the fraction of the time that both light bulbs are working.

Solution: To compute the steadystate distribution for this birth-death process, we compute

$$
\frac{1}{\pi_{0}}=1+\frac{2 / 30}{1 / 5}+\frac{2 / 30}{1 / 5} \times \frac{1 / 30}{1 / 5}=1+\frac{1}{3}+\frac{1}{6}=\frac{25}{18} \Rightarrow \pi_{0}=\frac{18}{25}=72 \%
$$

Then $\pi_{1}=\frac{1}{3} \pi_{0}=\frac{6}{25}=24 \% \quad \& \quad \pi_{2}=\frac{1}{6} \pi_{0}=\frac{1}{25}=4 \%$
c. Determine the fraction of the time that neither light bulb is working.

Solution: $\pi_{2}=4 \%$
d. Suppose that, when both bulbs are burned out and I replace a bulb, I replace both bulbs simultaneously. Why is this no longer a birth-death process?
Solution: The continuous-time Markov chain becomes

which is not a birth-death process, because "deaths" must be one-at-a-time in a birth-death process!

Frank and Ernest

2. Birth-death process A local takeout Chinese restaurant has space to accommodate at most five customers. During the frigid Iowa winter, it is noticed that when customers arrive and the restaurant is full, virtually no one waits outside in the subfreezing weather, but instead goes next door to Luigi's Pizza Palace. Customers arrive at the restaurant at the average rate of 10 per hour, according to a Poisson process. The restaurant serves customers one at a time, first-come, first-served, in an average of 3 minutes each (the actual time being exponentially distributed.)

(a.) What is the steady-state distribution of the number of customers in the restaurant?

Solution: First compute π_{0} :

$$
\frac{1}{\pi_{0}}=1+\frac{10}{20}+\left(\frac{10}{20}\right)^{2}+\left(\frac{10}{20}\right)^{3}+\left(\frac{10}{20}\right)^{4}+\left(\frac{10}{20}\right)^{5}=\frac{1-(1 / 2)^{6}}{1-1 / 2}=1.96875 \Rightarrow \pi_{0}=0.5079365 \approx 50.8 \%
$$

Population in restaurant	Probability
0	0.507937
1	0.253968
2	0.126984
3	0.0634921
4	0.031746
5	0.015873

(b.) What is the average number of customers in the Chinese restaurant at any time?

Solution: $L=\sum_{i=0}^{5} i \pi_{i}=0.904762$
(c.) What is the average arrival rate, considering that when there are 5 customers in the restaurant, the arrival rate is zero?
Solution: $\bar{\lambda}=\sum_{i=0}^{5} \lambda_{i} \pi_{i}=10 \pi_{0}+10 \pi_{1}+\cdots+10 \pi_{4}+0 \pi_{5}=9.68254$, i.e., 9.68254 customers per hour
(d.) According to Little's Law, what is the expected amount of time that a customer spends in the restaurant?

Solution: $L=\bar{\lambda} W \Rightarrow W=L / \bar{\lambda}=\frac{0.904762}{9.68254 / h r}=0.0934426 \mathrm{hr}=5.60656 \mathrm{~min}$
(e.) What is the fraction of potential customers who are lost to the pizza establishment? Solution: $\pi_{5} \approx 1.6 \%$ What is the number of customers per day lost to the pizza establishment?
Solution: $(10 /$ hour $) \times \pi_{5} \approx 0.16 /$ hour
3. Deterministic Dynamic Programming (A variation of the example presented in class) A utility company must plan expansion of its generating capacity over the next eight years. A forecast has been prepared, specifying the number of additional power plants R_{t} required at the end of each year t. Each year, at most three plants may be added. The cost of adding a power plant in year t is C_{t} per plant, plus a fixed cost of F_{t} (unless no plants are added).

Year	Reqd	Fixed cost	Marginal cost
t	R_{t}	F_{t}	C_{t}
1	1	2.4	3.4
2	2	2.4	3.5
3	3	2.5	3.5
4	5	2.5	3.5
5	7	2.6	3.4
6	8	2.6	3.4

A dynamic programming model with forward recursion is developed, so that stage $1=$ first year (now), stage $6=$ final year of planning period. Time value of money is to be considered, with a discount factor $=0.83333$. The computations at each stage are shown below in order to minimize the present value of the cost of adding the generating capacity. Note: A value " 9999.9999 " in the table indicates an infeasible combination of state \& decision.

S	1	$x: 0$	---Stage 1	6 (final year of pla Minimum	nning period)
7		9999.9999	6.0000	6.0000	
8		0.0000	9999.9999	0.0000	
---Stage 5---					
S	\backslash	$\mathrm{x}: \quad 0$	1	23	Minimum
5		9999.9999	9999.9999	14.400012 .8000	12.8000
6		9999.9999	11.0000	9.4000 9999.9999	9.4000
7		5.0000	6.0000	9999.9999 9999.9999	5.0000
8		0.0000	9999.9999	9999.9999 9999.9999\|	0.0000
---Stage 4---					
S	\backslash	$\mathrm{x}: 00$	1	23	Minimum
4		9999.9999	16.6667	17.333317 .1667	16.6667
5		10.6667	13.8333	$13.6667 \quad 13.0000$	10.6667
6		7.8333	10.1667	9.50009999 .9999	7.8333
7		4.1667	6.0000	9999.9999 9999.9999	4.1667
8		0.0000	9999.9999	9999.9999 9999.9999\|	0.0000
---Stage 3---					
S	\backslash	$\mathrm{x}: 0$	1	23	Minimum
2		9999.9999	9999.9999	23.388921 .8889	21.8889
3		9999.9999		18.3889 19.5278\|	18.3889
4		13.8889	14.8889	16.027816 .4722	13.8889
5		8.8889	12.5278	12.972213 .0000	8.8889
6		6.5278	9.4722	9.50009999 .9999	6.5278
7		3.4722	6.0000	9999.9999 9999.9999	3.4722
8	\dagger	0.0000	9999.9999	9999.9999 9999.9999\|	0.0000
---Stage 2---					
s	\backslash	$\mathrm{x}: 00$	1	23	Minimum
1		9999.9999	24.1407	24.724124 .4741	24.1407
2		18.2407	21.2241	$20.9741 \quad 20.3074$	18.2407
3		15.3241	17.4741	16.807418 .3398	15.3241
4		11.5741	13.3074	14.839815 .7935	11.5741
5		7.4074	11.3398	12.293512 .9000	7.4074
6		5.4398	8.7935	9.4000 9999.9999	5.4398
7		2.8935	5.9000	9999.9999 9999.9999	2.8935
8		0.0000	9999.9999	9999.9999 9999.9999\|	0.0000

---Stage 1 (first year of planning period)---

s	$x:$	0	1	2	3	Minimum
0	9999.9999	25.9173	24.4006	25.3701	24.4006	

a. What annual percent return on investment is implied by the discount factor $\beta=0.833333$?

Solution: $\quad \beta=\frac{1}{1+r} \Rightarrow r=\frac{1}{\beta}-1=20 \%$
b. One value is missing in the table, i.e., the total cost of years $3,4,5$, and 6 if, at the beginning of year 3 , the company has already added 3 plants and decides to add 1 additional plant. What is this value?

Construction cost in year $3 \quad \underline{2.5+3.5=6}$
Discounted minimum cost of years $4,5, \& 6 \underline{\beta} \mathrm{f}_{4}(4)=0.83333 \times 16.6667=13.8889$
Total
$\underline{19.8889}$
b. What is the minimum present value of the total construction cost to meet the requirements?

Solution: $\underline{\mathrm{fl}}(0)=\underline{24.4006}$
c. What is the optimal schedule for adding plants?

Solution: The "minimum" column in each table above displays the value
$\mathrm{F}_{\mathrm{n}}(\mathrm{s})=$ minimum cost of stages $\mathrm{n}, \mathrm{n}+1, \ldots 8$ if s plants are already built at the beginning of stage n and the column in which this minimum was found indicates the optimal decision at that stage.

One could, therefore, determine tables for all the optimal values and decisions:

| Stage 1
 Current Optimal Optimal Next
 State Decision Value State
 0 added Build 2 24.4006 2 added${ }^{2}$ | |
| :--- | :--- | :--- | :--- |

Stage 2 Current	Optimal Optimal Next State Decision Value		
1 added	Build 1	24.1407	2 added
2 added	Idle	18.2407	2 added
3 added	Idle	15.3241	3 added
4 added	Idle	11.5741	4 added
5 added	Idle	7.4074	5 added
6 added	Idle	5.4398	6 added
7 added	Idle	2.8935	7 added
8 added	Idle	0.0000	8 added

Stage 3 Current	Optimal	Optimal	Next
State	Decision	Value	State
2 added	Build 3	21.8889	5 added
3 added	Build 2	18.3889	5 added
4 added	Idle	13.8889	4 added
5 added	Idle	8.8889	5 added
6 added	Idle	6.5278	6 added
7 added	Idle	3.4722	7 added
8 added	Idle	0.0000	8 added

Stage 4			
Current	Optimal	Optimal	Next
State	Decision	Value	State
4 added	Build 1	16.6667	5 added
5 added	Idle	10.6667	5 added
6 added	Idle	7.8333	6 added
7 added	Idle	4.1667	7 added
8 added	Idle	0.0000	8 added

Stage 5 Current	Optimal	Optimal	Next
State	Decision	Value	State
5 added	Build 3	12.8000	8 added
6 added	Build 2	9.4000	8 added
7 added	Idle	5.0000	7 added
8 added	Idle	0.0000	8 added

Stage 6			
Current	Optimal	Optimal	Next
State	Decision	Value	State
7 added	Build 1	6.0000	8 added
8 added	Idle	0.0000	8 added

We can then trace through the table to find the optimal schedule for adding capacity:

Year t	\# plants to add	Cumulative \# plants added	\# plants required
1	2	2	1
2	0	2	2
3	3	5	3
4	0	5	5
5	3	8	7
6	0	8	8

d. Suppose that (for unspecified reasons) the number of plants added during the first year is one (not optimal!). What is the best schedule for adding capacity during the remaining five years?
Solution: If the system begins stage 2 in state 1 , we can trace through the tables beginning with stage 2 in order to obtain the following schedule for adding capacity:

Year t	\# plants to add	Cumulative \# plants added	\# plants required
1	1	1	1
2	1	2	2
3	3	5	3
4	0	5	5
5	3	8	7
6	0	8	8

Homework \#11 Solution -- Fall 2001

1. Redistricting Problem A state is to be allocated twenty representatives (Reps) to be sent to the national legislature. There are nine districts within the state, whose boundaries are fixed. Every district should be assigned at least one representative. The allocation should be done according to the population (Pop) of the districts:

District	1	2	3	4	5	6	7	8	9
	Population	50	60	70	50	70	100	20	70

The "target allocation" of district i is Reps times Pop[i] divided by the population of the state, but this target is generally non-integer. The objective is the assign the representatives to the districts in such a way that the maximum absolute deviation from the targets is as small as possible.
In the DP model, there is a stage for each district, and the state of the system is the number of representatives not yet assigned when we decide upon the allocation to district i. The optimal value function is defined by a forward recursion:

$$
\left\{\begin{array}{l}
f_{n}(s)=\operatorname{minimum}_{x \in\{1,2,3,4\}} \max \left\{\left|\alpha_{\mathrm{n}}-x\right|, f_{n+1}(s-x)\right\} \\
f_{0}(0)=0 \& f_{0}(s)=+\infty \text { for } s>0
\end{array}\right.
$$

That is, the optimal value function $f_{n}(s)$ at stage n with state s is the smallest possible value of the maximum absolute deviations from the targets α of the allocation to districts $n, n+1, \ldots .9$ if the total number of representatives available to those districts is given by the state s.
a. What is the "target" allocation α_{i} of each district?

District	1	2	3	4	5	6	7	8	9
Population	50	60	70	50	70	100	20	70	40
Target	1.88	2.26	2.64	1.88	2.64	3.77	0.75	2.64	1.51
Rounded:	2	2	3	2	3	4	1	3	2

Note that by rounding the "target" to the nearest integer, the number of representatives allocated is 22 (>20 !)
b. Compute the missing values in the table below for stage 3 .

Solution: The target allocation α_{3} is 2.64. Therefore:
($\boldsymbol{s}=12, \boldsymbol{x}=1$): $\max \left\{\left|\alpha_{\mathrm{n}}-x\right|, f_{n+1}(s-x)\right\}=\max \left\{|2.64-1|, f_{4}(11)\right\}=\max \{1.64,0.77\}=1.64$
($\boldsymbol{s}=\mathbf{1 2}, \boldsymbol{x}=\mathbf{2}$): $\max \left\{|2.64-2|, f_{4}(10)\right\}=\max \{0.64,0.89\}=0.89$
$(\boldsymbol{s}=12, \boldsymbol{x}=3): \max \left\{|2.64-3|, f_{4}(9)\right\}=\max \{0.36,1.64\}=1.64$
$(\boldsymbol{s}=12, \boldsymbol{x}=1): \max \left\{|2.64-1|, f_{4}(11)\right\}=\max \{1.64,0.77\}=1.64$
$(\boldsymbol{s}=13, \boldsymbol{x}=1): \max \left\{\left|\alpha_{\mathrm{n}}-x\right|, f_{n+1}(s-x)\right\}=\max \left\{|2.64-1|, f_{4}(12)\right\}=\max \{1.64,0.64\}=1.64$, etc.
c. There are three optimal solutions to this problem. For each solution, what are the optimal allocations of representatives to districts? (Enter in tables below.)

Solution \#1:

District	1	2	3	4	5	6	7	8	9
Allocation	2	2	2	2	3	4	1	3	1
Deviation	+0.12	-0.26	-0.64	+0.12	+0.36	+0.23	+0.25	+0.36	-0.51

Solution \#2:

District	1	2	3	4	5	6	7	8	9
Allocation	2	2	3	2	2	4	1	3	1
Deviation	+0.12	-0.26	+0.36	+0.12	-0.64	+0.23	+0.25	+0.36	-0.51

Solution \#3:

District	1	2	3	4	5	6	7	8	9
Allocation	2	2	3	2	3	4	1	2	1
Deviation	+0.12	-0.26	+0.36	+0.12	+0.36	+0.23	+0.25	-0.64	-0.51

d. Does one of the three solutions seem "better" than the others with respect to some other considerations? ???? They seem very comparable to me in every way!
e. Which district has the largest positive deviation from its target allocation?

Solution \#1: district 3; Solution \#2: District 5; Solution \#3: District 8
f. Which district has the largest negative deviation from its target allocation? Same as (e)-in every case, the deviation with the maximumabsolute value is negative, i.e., the district is underrepresented.

---Stage 9---							
S	\backslash		1	2	3	4	Min
1			0.51	999.99	999.99	999.991	0.51
2			999.99	0.49	999.99	999.991	0.49
3			999.99	999.99	1.49	999.991	1.49
4			999.99	999.99	999.99	2.491	2.49

S	\x:	1	2	3	4 \|	Min
5	\|	2.77	999.99	999.99	999.991	2.77
6	\|	1.77	2.77	999.99	999.991	1.77
7	\|	1.64	1.77	2.77	999.991	1.64
8	\|	1.64	1.64	1.77	2.771	1.64
9	\|	1.64	0.77	1.64	1.771	0.77
10	\|	1.64	0.64	0.77	1.641	0.64
11	\|	1.64	0.64	0.64	1.361	0.64
12	\|	1.64	0.64	0.51	1.361	0.51
13	\|	1.64	1.25	0.49	1.361	0.49
14	\|	1.64	1.36	1.25	1.361	1.25
15	\|	2.25	1.49	1.36	1.361	1.36
16	\|	2.49	2.25	1.49	1.361	1.36

s 1	\x:	1	2	3	4	Min
8	\|	1.64	1.77	2.77	999.991	1.64
9	\|	1.64	1.64	1.77	2.771	1.64
10	\|	0.89	1.64	1.64	2.11\|	0.89
11	\|	0.89	0.77	1.64	2.11\|	0.77
12	\|	0.89	0.64	1.11	2.11\|	0.64
13	\|	0.89	0.64	1.11	2.11\|	0.64
14	\|	0.89	0.51	1.11	2.11\|	0.51
15	\|	1.25	0.49	1.11	2.11\|	0.49
16	\|	1.36	1.25	1.11	2.111	1.11
17		1.36	1.36	1.25	2.11\|	1.25

1.640 .891 .641 .641 .64

S \ x:		---Stage 3---				
		1	2	3	4	Min
12		1.64	0.89	1.64	1.641	0.89
13		1.64	0.77	0.89	$1.64 \mid$	0.77
14		1.64	0.64	0.77	1.36\|	0.64
15		1.64	0.64	0.64	1.361	0.64
16		1.64	0.64	0.64	1.361	0.64
17		1.64	0.64	0.51	1.361	0.51
18	\|	1.64	1.11	0.49	1.361	0.49

	F	- --Stage				
s	$\mathrm{x}: 1$	2	3	4	Min	
16	1.26	0.64	0.77	$1.74 \mid$	0.64	
17	1.26	0.64	0.74	$1.74 \mid$	0.64	
18	1.26	0.64	0.74	$1.74 \mid$	0.64	
19	1.26	0.51	0.74	1.74	0.51	

s	$\mathrm{x}: 1$	-m Stage				

2. (Deterministic) Equipment Replacement. The optimal policy for replacement of a machine over the next ten years is required. The cost of a new machine is $\$ 10,000$. The table below indicates the annual operating cost of the machine, and the trade-in value, according to its age. The policy is to keep a machine for no more than six years. A new machine has just been purchased (whose cost should not be considered), and at the end of the tenyear planning period, a new machine is required.

Age of machine (yrs)	Operating cost/year (\$)	Trade-in value (\$)
0	1400	7500
1	1800	6000
2	2400	5000
3	3000	4200
4	3500	3500
5	4000	2500
6	4500	0

a. What is the total cost of the policy which replaces the machine at the end of year 5 and year 10 ?

Define the functions
$\mathrm{g}(\mathrm{n})=$ minimum total operating $\&$ replacement cost (including trade-in value) if, with n years remaining in the planning period, you have a new machine
$\mathrm{y}(\mathrm{n})=$ optimal age at which the machine is to be replaced if, with n years remaining in the planning period, you have a new machine.

Yrs to $g o(n)$	$g(n)$	$y(n)$
10	25600	2,3, or 4
9	21800	3
8	18400	2 or 3
7	15000	2,3, or 4
6	11200	3
5	7800	2 or 3
4	4400	2 or 4
3	600	3
2	-2800	2
1	-6100	1
0	0	

For example, if $\mathrm{n}=2$ years remain with a new machine, which is replaced at the end of two years, i.e., $y(2)=2$, the total cost is: operating cost: $\quad 1400+1800=3400$
cost of new machine: 10000
trade-in value: $\quad \underline{-2500}$
Total: 7200
b. Complete the computations in the table above. Solution: see above.

For example, when $n=8$:

If $\mathrm{y}=$	1	2	3	4	5	6
then $\mathrm{OC}=$	1400	3200	5600	8600	12100	16100
and $\mathrm{RC}=$	2500	4000	5000	5800	6500	7500
and $\mathrm{g}(8-\mathrm{y})=$	15000	11200	7800	4400	600	-2800
So total $=$	18900	18400	18400	18800	19200	20800

c. If "now" is January 1, 2002, what are the optimal dates at which the machine should be replaced?

Solution: There are several (nine in all!) optimal policies:
For example, if we choose $\mathrm{y}(10)=2$, the first replacement should be Jan. 1 of 2004, with 8 years remaining. If we then choose $y(8)=3$, the next replacement will be Jan. 1, 2007, with 5 years remaining.
If we then choose $y(5)=3$, the next replacement will be Jan. 1, 2010, with 2 years remaining.
The only optimal choice then is $\mathrm{y}(2)=2$, so that with 0 years remaining on Jan. 1, 2012, there is no replacement needed. (This solution is the path ending with node " c " below.)

+ + + + + + + + + + + + + + + + + +

3. Stochastic Production Planning. The state of the system is the "inventory position", which if positive is the stock on hand, and if negative is the number of backorders which have accumulated, which is observed at the end of the business day. The decision is the number of units to be produced, which is no more than 3. There is a setup cost of $\$ 10$ if any units are produced, plus $\$ 4$ per unit. We assume that production is completed in time to meet any demand that occurs the next day.
The demand is a discrete random variable with stationary distribution

D	0	1	2	3	4
$\mathrm{P}\{\mathrm{D}\}$	0.1	0.2	0.3	0.2	0.2

In addition, there is a storage cost of $\$ 1$ per unit, based upon the end-of-day inventory, and a shortage cost of $\$ 15$ per unit, based upon any backorders. Finally, at the end of the planning period (5 days), a salvage value of $\$ 2$ per unit is received for any remaining inventory. If any shortage exists at the end of the planning period, enough must be produced to satisfy that shortage.
A backward recursion is used, where $\mathrm{F}(\mathrm{N})$ is a vector (one element per state) containing the minimum expected cost of the final N days of the planning period if the initial inventory position corresponds to that state. Initially, with 5 days remaining (i.e., stage 5) there are 2 units in inventory.

Below are the tables used to compute the optimal production policy.
a. What is the missing value in the table for stage 1 ? $\quad \underline{22.80}$

Production $\operatorname{cost}(x=2): \quad 10+2 \times 4=18$
Storage cost ($\mathrm{s}=1$): 1
If demand $=0$, final state is 3 , so salvage value is -6
If demand $=1$, final state is 2 , so salvage value is -4
If demand $=2$, final state is 1 , so salvage value is -2
If demand $=3$, final state is 0 , so cost $=0$
If demand $=4$, final state is -1 , i.e., shortage of 1 unit, so cost is 15 shortage cost +14 production cost $=29$
Total expected cost: $19+(0.1 \times(-6))+(0.2 \times(-4))+(0.3 \times(-2))+(0.2 \times 0)+(0.2 \times 29)=19+3.8=22.8$
b. What is the missing value in the table for stage 5? $\xlongequal[93.32]{ }$

$$
\begin{aligned}
& \text { Production cost }(x=2): \quad 10+2 \times 4=18 \\
& \text { Storage cost }(\mathrm{s}=2): 2 \\
& \text { If demand }=0 \text {, final state is } 4 \text {, and } \mathrm{f}_{4}(4)=58.01 \\
& \text { If demand }=1 \text {, final state is } 3 \text {, and } \mathrm{f}_{4}(3)=65.84 \\
& \text { If demand }=2 \text {, final state is } 2 \text {, and } \mathrm{f}_{4}(2)=71.10 \\
& \text { If demand }=3 \text {, final state is } 1 \text {, and } \mathrm{f}_{4}(1)=77.01 \\
& \text { If demand }=4 \text {, final state is } 0 \text {, and } \mathrm{f}_{4}(0)=88.09 \\
& \text { Total expected cost: } \\
& 20+(0.1 \times 58.01)+(0.2 \times 65.84)+(0.3 \times 71.10)+(0.2 \times 77.01)+(0.2 \times 88.09) \\
& \quad=20+73.32=93.32
\end{aligned}
$$

c. What is the optimal production decision at the initial stage (stage 5)? produce 3
d. What is the minimum expected cost (total of production, storage, and shortage costs) for the five-day period?
\qquad
e. Suppose that the demand in the first day (i.e., stage 5) is 1 . What is the optimal production decision for day 2 (i.e., stage 4)? _0_ The quantity available to satisfy the first day's demand is $2+3=5$. If the demand is 1 , then the second day is begun with stock-on-hand $=4$, and according to the table for stage 4, the optimal production quantity is 0

S	\backslash	x: 0	1	2	3	Minimum
3	\|	9999.99	9999.99	9999.99	150.551	150.55
2	\|	9999.99	9999.99	131.55	114.081	114.08
1	\|	9999.99	112.55	95.08	77.281	77.28
0	\|	83.55	76.08	58.28	47.261	47.26
1	\|	63.08	55.28	44.26	38.361	38.36
2	\|	42.28	41.26	35.36	33.221	33.22
3	\|	28.26	32.36	30.22	29.481	28.26
4	\|	19.36	27.22	26.48	26.781	19.36
5	\|	14.22	23.48	23.78	26.001	14.22
6	\|	10.48	20.78	23.00	26.601	10.48

S	\backslash	x: 0	$\begin{gathered} ---S t \\ 1 \end{gathered}$	$\begin{gathered} \text { age } 3-1 \\ 2 \\ \hline \end{gathered}$	3	Minimum
3		9999.99	9999.99	9999.99	181.63\|	181.63
-2		9999.99	9999.99	162.63	141.401	141.40
1		9999.99	143.63	122.40	100.441	100.44
0		114.63	103.40	81.44	67.891	67.89
1		90.40	78.44	64.89	57.681	57.68
2		65.44	61.89	54.68	52.091	52.09
3		48.89	51.68	49.09	47.001	47.00
4		38.68	46.09	44.00	42.931	38.68
5		33.09	41.00	39.93	40.001	33.09
6		28.00	36.93	37.00	39.231	28.00

S	\backslash	$\mathrm{x}: 0$	1	$\begin{array}{r} \text { age } \\ 2 \end{array}$	31	Minimum
3	\|	9999.99	9999.99	9999.99	208.951	208.95
2	\|	9999.99	9999.99	189.95	166.081	166.08
-1	\|	9999.99	170.95	147.08	122.481	122.48
0	\|	141.95	128.08	103.48	88.091	88.09
1	\|	115.08	100.48	85.09	77.011	77.01
2	\|	87.48	82.09	74.01	71.101	71.10
3	\|	69.09	71.01	68.10	65.841	65.84
4	\|	58.01	65.10	62.84	61.461	58.01
5		52.10	59.84	58.46	58.151	52.10
6	I	46.84	55.46	55.15	57.011	46.84
S	\backslash	$\mathrm{x}: 0$	$\begin{array}{cl} --- \text { Stage } & 5--- \\ 1 & 2 \end{array}$		31	Minimum
2		108.65	102.02	93.32	90.181	90.18

1. Quiz Show A person has been invited to be a contestant on a TV quiz show, in which there are seven stages ($1, \ldots 7$). At any stage i, the contestant may choose to quit and receive her accumulated winnings.

If the person chooses to continue, she is presented with a question which, if correctly answered, allows her to advance to the next stage $(i+1)$, but if not correctly answered, forces her to quit with no payoff, i.e., she loses everything.
The questions become progressively more difficult at each stage, of course, and she estimates that the probability that she can answer the question at stage i to be $\mathrm{P}[\mathrm{i}]$ where $\mathrm{P}[\mathrm{i}+1]<\mathrm{P}[\mathrm{i}]$.
If she correctly answers the sixth question, she receives her total winnings ($\$ 1+2+4+8+\ldots+64=\$ 127$).

Question	1	2	3	4	5	6	7
Prize	1	2	4	8	16	32	64
P correct $\}$	0.9	0.8	0.7	0.6	0.5	0.4	0.3

Having recently taken an O.R. course, she does an analysis using dynamic programming to determine her optimal strategy prior to appearing on the quiz show. She defines the optimal value function $f_{n}(s)=$ maximum expected future payoff if, at stage (question) n, she is in state $s(s=1$ for "active", 0 for "inactive"):

$$
\begin{aligned}
& f_{n}(s)=\left\{\begin{array}{l}
\sum_{i=1}^{n-1} R_{i} \quad \text { if } \mathrm{s}=1 \text { "active" } \& \mathrm{x}=0 \text { "quit" } \\
p_{n} f_{n+1}(1)+\left(1-p_{n}\right) f_{n+1}(0) \quad \text { if } \mathrm{x}=1 \text { "continue" } \\
f_{8}(s)=0
\end{array}\right.
\end{aligned}
$$

Stage	7			
s	$\backslash x:$	1	0	Maximum
1	18.90	$63.00 \mid$	63.00	
0	1	0.00	0.00	0.00

Stage	6		
s			
$x:$	1	0	Maximum
1	25.20	$31.00 \mid$	31.00
0	1	0.00	0.00

Stage	5		
s			
$x:$	0	Maximum	
1	15.50	15.00	15.50
0	0.00	0.00	0.00

Stage 4

s	$x: 1$	0	Maximum
1	9.30	$7.00 \mid$	9.30
0	0.00	$0.00 \mid$	0.00

a. Explain the contestant's optimal strategy: at what stage should she quit and keep her earnings?

Solution: She should decide to continue unless she reaches stage 6, i.e., the $\$ 32$ question. At this point, she should take her accumulated earnings ($\$ 31$) and go home, since her expected payoff would only be $\$ 25.20$ if she were to continue.
b. Assume that she is motivated by economic values alone. A bus ticket to the studio of the TV station will cost her \$5. Should she accept the invitation? (Explain.)
Solution: Her expected payoff at stage 1 is only $\$ 4.69$, and so the optimal decision would be to decline the invitation to compete.
2. Vladimir Ulanowsky is playing Keith Smithson in a two-game chess match. Winning a game scores 1 match point, and drawing a game scores $1 / 2$ match point. After the two games are played, the player with more match points is declared the champion. If the two players are tied after two games, there is a "sudden death" playoff, i.e., they continue playing until someone wins a game (the winner of that game will then be the champion).

During each game, Ulanowsky can play one of two ways: boldly or conservatively. If he plays boldly, he has a 45% chance of winning the game and a 55% chance of losing the game. If he plays conservatively, he has a 90% chance of drawing the game and a 10% chance of losing the game. Note that if the match enters a "sudden death" playoff, his obvious strategy is to play boldly at that time, since he has no chance to win otherwise.

Ulanowsky's goal is to maximize his probability of winning the match. Use dynamic programming to help him accomplish this goal. (If this problem is solved correctly, even though Ulanowsky is the inferior player, his chance of winning the match is over $1 / 2$.)

Solution: A decision tree might be used to do this computation, and even though the amount of computation is slightly more than is required by DP, it is easier to understand. See the decision tree on the next page.

The result is that Ulanowsky should play boldly the first game. If he wins this first game, he should play conservatively the second game, but he should play boldly if he loses the first game. Using this strategy, he has a 53.6625% probability that he will win the match!

3. Casino Problem Consider the "Casino Problem" presented in the lectures, but with six plays of the game, and the goal being to accumulate at least six chips, beginning with 3 chips, where the probability of winning at each play of the game is 55%.

In the DP model with results presented below, the recursion is "forward", i.e., the stages range from $\mathrm{n}=1$ (first play of the game) to $\mathrm{n}=6$ (final play of the game). The state is the number of chips accumulated, and the decision is the number of chips to bet at the current play of the game.
a. Compute the missing number in the table for stage $1 . \underline{0.567}$

Solution: Given that he has 3 chips and bets one of them, his maximum probability of accumulating 6 chips is

$$
0.55 f_{2}(4)+0.45 f_{2}(2)=0.55 \times 0.72+0.45 \times 0.38=0.567
$$

b. What is the probability that six chips can be accumulated at the end of six plays of the game? _ 57
c. How many chips should be bet at the first play of the game? __ $\underline{2}$ (If more than one value is optimal, choose an answer arbitrarily.) Note: The print format would make it appear that the optimal decision is 2, but actually, 1 is equally optimal.
d. If one bets the amount you selected in (c) and the first play of the game is won, what should be the bet at the second play of the game?
Solution: If two chips are bet and he wins, he then has five chips, and the optimal decision at stage 2 for state 5 is 1 (or 0).
If the first play of the game is lost, what should be the bet at the second play of the game?
Solution: If two chips are bet and he loses, he then has one chip, and the optimal decision at stage 2 for state 1 is \qquad

s	x:	1	2	3	4	5	6	Max
0	0.00	XXXX	XXXXX	XXXXXXX	XXXXXX	XXXXXXX	XXXXX\|	0.00
1	0.00	0.00	XXXXX	XXXXXX	XXXXXX	XXXXXX	XXXXX\|	0.00
2	0.00	0.30	0.30	XXXX	XXXXXX	XXXXXX	XXXXX	0.30
3	0.55	0.30	0.30	0.55	XXXXX	XXXXXX	XXXXX\|	0.55
4	0.55	0.55	0.55	0.55	0.55	XXXXX	XXXXX\|	0.55
5	0.55	0.80	0.80	0.55	0.55	0.55	XXXX\|	0.80
6	1.00	0.80	0.80	0.80	0.55	0.55	0.551	1.00

S	x:	1	2	3	4	5	6	Max
0	0.00	XXXX	XXXXX	XXXXXX	XXXXXX	XXXXXXXX	XXXXX\|	0.00
1	0.00	0.17	XXXX	XXXXXX	XXXXXX	XXXXXX	XXXXX	0.17
2	0.30	0.30	0.30	XXXXX	XXXXXX	XXXXXX	XXXXX 1	0.30
3	0.55	0.44	0.44	0.55	XXXXX	XXXXXX	XXXXX 1	0.55
4	0.55	0.69	0.69	0.55	0.55	XXXXX	XXXXX 1	0.69
5	0.80	0.80	0.80	0.69	0.55	0.55	XXXX 1	0.80
6	1.00	0.91	0.80	0.80	0.69	0.55	0.551	1.00

1	0.17	0.17	XXXXXXXXXXXXXXXXXXXXXXXX\|	0.17			
2	0.30	0.38	0.38	XXXXXXXXXXXXXXXXXXX\|	0.38		
3	0.55	0.51	0.51	0.55	XXXXXXXXXXXXXX\|	0.55	
4	0.69	0.69	0.69	0.62	0.55	XXXXXXXXX\|	0.69
5	0.80	0.86	0.80	0.69	0.62	0.55	XXXX\|
6	1.00	0.91	0.86	0.80	0.69	0.62	0.55
	1.00						

---Stage 2---									
0		0.00	XXXX	XXXXX	XXXXX	XXXXX	XXXX	XXXX\|	0.00
1	I	0.17	0.21	XXXX	XXXXX	XXXXX	XXXX	XXXXXX\|	0.21
2		0.38	0.38	0.38	XXXX	XXXXX	XXXX	XXXXXX	0.38
3		0.55	0.55	0.55	0.55	XXXX	XXXX	XXXXX 1	0.55
4		0.69	0.72	0.72	0.62	0.55	XXX	XXXXX	0.72
5		0.86	0.86	0.80	0.72	0.62	0.5	XXXX	0.86
6		1.00	0.94	0.86	0.80	0.72	0.6	0.551	1.00

[^0]: Shipments

