	6:171 Operations Re	search
	Instructor: D.L. Br	
	October 13, 2000	
		Possible
1. True/False & multipl	e choice	20
2. Sensitivity analysis (LINDO)	20
3. Geometry & duality	of LP	20
4. Revised Simplex Me	thod	10
5. Transportation probl	em	10
Total:		80
· · · · · · · · · · · · · · · · · · ·	: 1. 1:CC :	1 0 51

There are two versions of the exam, which differ in sections 4 & 5!

- (1.) *True/False:* Indicate by "+" or "o" whether each statement is "true" or "false", respectively:
- a. If the optimal value of a slack variable of a primal LP constraint is zero, then the optimal value of the dual 0 variable for that same constraint must be positive.
- b. In reference to LP, the terms "dual variable", "shadow price", and "simplex multiplier" are all synonymous.
- 0 c. If you make a mistake in choosing the pivot column in the simplex method, the next basic solution will have one or more negative basic variables.
- d. If the primal LP feasible region is nonempty and bounded, then the dual LP can be neither unbounded nor infeasible.
- e. An assignment problem is a special case of a transportation problem
- f. A degenerate solution of an LP has fewer basic than nonbasic variables.
- + 0 0 g. If a basic feasible solution of a transportation problem is degenerate, the next iteration cannot result in an improvement of the objective.
- <u>0</u> h. The two-phase simplex method solves for the dual variables in phase one, and then solves for the primal variables in phase two.
- i. In a "balanced" transportation problem, the number of sources equals the number of destinations
 - j. If there is a tie in the minimum ratio test of the simplex method, the tableau that follows will be degenerate.
 - k. A dual variable for an equality constraint is always zero.
 - 1. The slack variable and the dual variable for a constraint cannot both be positive.
- m. In a transportation problem with 4 sources and 6 destinations, with total supply exceeding total demand, the number of basic variables will be 10.
- 0 + 0 + + + + + + + + n. In a minimization LP problem, if the right-hand-side of a "greater-than-or-equal" constraint is increased, the objective function will either remain the same or increase.
- o. The "complementary slackness condition" of LP implies that in the output of the optimal solution, either the slack (or surplus) in a constraint or its dual variable (or both) must be zero.
 - p. Every basic feasible solution of an assignment problem is degenerate.

Match the four hypothetical graphs of optimal value vs right-hand-side to the appropriate combination of min/max and inequality type, by writing the correct letter (A,B,C,D) in the blanks.

2. Sensitivity Analysis in LP. Consult the LINDO output to answer the questions below: A refinery takes four raw gasolines, blends them, and produces three types of fuel.

Raw Gasoline	Octane	Available	Price
Type	Rating	(barrels/day)	(\$/barrel)
1	68	4000	31.02
2	86	5050	33.15
3	91	7100	36.35
4	99	4300	38.75

Fuel Blend	Min Octane	Selling price	Demand
Туре	Rating	(\$/barrel)	(barrels/day)
1	95	45.15	≤ 10,000
2	90	42.95	any amt can be sold
3	85	40.99	≥ 15,000
1 . 1	1 11		

Raw gasolines not used in blending can be sold at

• \$38.95/barrel if octane rating \geq 90

♦ \$36.85/barrel if octane rating <90

Decision variables:

XIJ = barrels/day of raw gasoline of type I ($1 \le I \le 4$) used in making fuel type J ($1 \le J \le 3$)

YI = barrels/day of raw gasoline type I sold "as is" on the market (I=1,2,3,4)

a. In the optimal solution, neither raw gasolines #2, #3, or #4 is sold on the market (without blending). If you were *required* to sell 10 barrels of one of these raw gasoline types, which one would you select? <u>#3</u>

b. If you sold 10 barrels of this raw gasoline on the market, what would be the effect on the quantity of raw gasoline #1 sold on the market? <u>1.48</u> (check: increase or Xdecrease?)

c. If 100 additional barrels/day of fuel blend #3 must be produced, what is

... the effect on the profit? \$108.59 (check: increase or Xdecrease?)

...the effect on the quantity of raw gasoline #1 sold on the market? 37 (check: increase or X decrease?)

...the effect on the quantity of fuel blend #1 which is produced? <u>62.9</u> (check: increase or <u>X</u>decrease?) (Note: X11 increases by 8.1 and X41 by 54.8, a total of 62.9)

d. If the minimum octane rating for fuel blend #3 were 87 rather than 85, what would be the coefficients in the constraint of row #4: $-19 \times 13 + (-1) \times 23 + (-4) \times 33 + 12 \times 43 \ge 0$

asoline Blendir MAX 14.13 X11 + 12 X21 + 8.8 X31 + 6.4 X41 + 11.93 X12 + 9.8 X22 + 6.6 X32 + 4.2 X42 + 9.97 X13 + 7.84 X23 + 4.64 X33 + 2.24 X43 + 5.83 Y1 + 3.7 Y2 + 2.6 Y3 + 0.2 Y4 SUBJECT TO 2) - 27 X11 - 9 X21 - 4 X31 + 4 X41 >= 0 3) - 22 X12 - 4 X22 + X32 + 9 X42 >= 0 4) - 17 X13 + X23 + 6 X33 + 14 X43 >= 0 5) X11 + X12 + X13 + Y1 <= 4000 6) X21 + X22 + X23 + Y2<= 5050 X31 + X32 + X33 + Y3 7) 7100 <= 8) X41 + X42 + X43 + Y4<= 4300 9) X11 + X21 + X31 + X41 <= 10000 10) 15000 X13 + X23 + X33 + X43 >= END OBJECTIVE FUNCTION VALUE 140216.5 1)

VARTARLE	VALUE	REDUCED CO	ST
x11	633,213867		000
x21	0.000000	0.000	000
x31	0.00000	0.000	000
X41	4274.193359	0.000	000
X12	0.00000	0.000	000
X22	0.00000	0.542	424
X32	0.00000	0.693	098
X42	0.00000	0.934	175
X13	2824.193604	0.000	000
X23	5050.000000	0.000	000
X33	/100.000000	0.000	
A43 V1	25.800452 542 502500	0.000	000
v2	0 00000	5 533	333
¥3	0.000000	4.970	370
¥4	0.000000	7.429	630
ROW	SLACK OR SURPL	US DUAL PRI	CES
2)	0.00000	-0.307	407
3)	0.00000	-0.277	273
4)	0.00000	-0.307	407
5)	0.000000	5.830	000
6)	0.000000	9.233	334
7)	0.000000	7.570	370
8)	5002 502773	0.000	
10)	0.000000	-1.085	926
- /			
RANGES IN	WHICH THE BASIS	IS UNCHANGED:	
		OBJ COEFFICIENT	RANGES
VARIABLE	CURRENT	ALLOWABLE	ALLOWABLE
v 11		INCREASE	DECREASE
x21	12 00000		0.000000 TNFTNTTV
x31	8.800000	0.000000	INFINITY
X41	6.400000	INFINITY	0.000000
X12	11.930000	2.283539	2.983334
X22	9.800000	0.542424	INFINITY
X32	6.60000	0.693098	INFINITY
X42	4.200000	0.934175	INFINITY
X13	9.970000	0.00000	9.529630
X23	7.840000	INFINITY	0.000000
X33	4.640000	INF'INI'I'Y	0.000000
X43	2.240000	0.000000	
11 V2	3.830000	5 533334	2.932000 TNFTNTTV
¥3	2 60000	4 970370	TNFINITY
¥4	0.200000	7.429630	INFINITY
		RIGHTHAND SIDE	RANGES
ROW	CURRENT	ALLOWABLE	ALLOWABLE
2	RHS 0 000000	INCREASE	
2	0.000000	1/090.//3430	11037 037100
4	0,000000	87550 007812	800 000000
5	4000.000000	JNFINITY	542.592590
6	5050.000000	44.444447	1627.777710
7	7100.000000	34.782608	3662.500000
8	4300.000000	3662.500000	4274.193359
9	10000.000000	INFINITY	5092.592773
10	15000.000000	1465.000000	47.058823

ROW 1 2 3 4 5 6 7 8 9 10	(BASIS) ART X11 X12 X13 X33 X23 X41 X43 SLK 9 Y1	X11 0.000 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	X21 0.000 0.419 0.000 -0.419 0.000 1.000 0.581 -0.581 0.000 0.000	x31 0.000 0.258 0.000 -0.258 1.000 0.000 0.742 -0.742 0.000 0.000	x41 0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000	X12 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	x22 0.542 0.086 0.182 -0.419 0.000 1.000 0.581 -0.581 -0.667 0.152
ROW 1 2 3 4 5 6 7 8 9 10	X32 0.693 0.110 -0.045 -0.258 1.000 0.000 0.742 -0.742 -0.742 -0.852 0.194	X42 0.934 0.148 -0.409 0.000 0.000 1.000 0.000 -1.148 0.261	X13 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	x23 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000	X33 0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000	X43 0.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000	Y1 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000
ROW 1 2 3 4 5 6 7 8 9 10	Y2 5.533 0.086 0.000 -0.419 0.000 1.000 0.581 -0.581 -0.667 0.333	Y3 4.970 0.110 0.000 -0.258 1.000 0.000 0.742 -0.742 -0.742 -0.852 0.148	¥4 7.430 0.148 0.000 0.000 0.000 1.000 0.000 -1.148 -0.148	SLK 2 0.307 0.007 0.000 0.000 0.000 0.000 0.000 0.000 -0.037 -0.037	SLK 3 0.277 0.000 0.045 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	SLK 4 0.307 0.005 0.000 0.032 0.000 0.000 0.032 -0.032 -0.037 -0.037	SLK 5 5.830 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000
ROW 1 2 3 4 5 6 7 8 9 10	SLK 6 9.2 0.086 0.000 -0.419 0.000 1.000 0.581 -0.581 -0.667 0.333	SLK 7 7.6 0.110 0.000 -0.258 1.000 0.000 0.742 -0.742 -0.742 -0.852 0.148	SLK 8 7.6 0.148 0.000 0.000 0.000 1.000 0.000 -1.148 -0.148	SLK 9 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000	SLK10 1.1 0.081 0.000 -0.452 0.000 0.000 0.548 -0.548 -0.630 0.370	0.14E+06 633.214 0.000 2824.194 7100.000 5050.000 4274.193 25.806 5092.593 542.593	

3. Geometry & Duality of the Linear Programming. Consider the following LP problem: Consider the *primal* LP problem:

Max $z = 10X_1 + 8X_2$ s.t. $X_1 + X_2 \ge 3$ $2X_1 - X_2 \ge 2$ $2X_1 + 4X_2 \le 10$ $X_1 \ge 0, X_2 \ge 0$

THE TABLEAU

a. Write the dual of the above problem, filling the blanks with numbers and the boxes with \leq , =, \geq , or "U" *(unrestricted in sign):*

Let x_3 , x_4 , & x_5 be the slack/surplus variables for constraints (1)-(3). Below is a graph of the feasible region:

(b.) The primal feasible region is a polyhedron. Which edges (#1 through #5) form its boundary? #1,3,4, &5

(c.) How many basic variables must this primal LP problem have? 3

- (d.) Of the nine points labeled A through I, what is the number of them which correspond to basic solutions? 9____
- (e.) Which variables are basic at the point labeled G? X1, X2, & X3
- (f.) Suppose that during the simplex method, a move is made from the extreme point labeled (H), i.e., X=(3,0), to the extreme point labeled (F), i.e., X = $(\frac{5}{3}, \frac{4}{3})$. Which variable entered the basis? X2 Which left the basis? X4

(g.) What is the total number of basic solutions of the system?

How many of these are feasible? _____ How many are infeasible? _____ (Do NOT compute them!)

Given: Point G is optimal,

⁽h.) Based upon complementary slackness principles, what can be said about the optimal values of the dual variables (where $Y_3 \& Y_4$ are slack/surplus in dual constraints 1 & 2, respectively)?

$Y_1 \underline{X}$ must be zero	must be nonzero	undetermined
Y_2 must be zero	must be nonzero	<u>X</u> undetermined
Y_3 must be zero	must be nonzero	<u>X</u> undetermined
$Y_4 _ X$ must be zero	must be nonzero	undetermined
$Y_5 \underline{X}$ must be zero	must be nonzero	undetermined

IDIDI VERSION A

4. Revised Simplex Method. Consider the initial LP tableau for a MINIMIZATION problem:

-Z	X1	X2	X3	X4	X5	X6	X7	b
1	1	15	8	0	0	0	0	0
0	-1	1	1	1	0	0	0	4
0	1	-1	0	0	1	0	0	1
0	2	10	1	0	0	1	0	5
0	0	-1	2	0	0	0	1	10

At a later iteration, besides -z, the basic variables are (in order) X_4 , X_3 , X_1 , X_7 (i.e., the basis is B={4, 3, 1, 7} and the basis inverse matrix is

[1	1	-1	0]	-1	1	3	-1	0]	
0	0	1	0		0	-2	1	0	
0	1	2	0	_	0	1	0	0	
0	2	0	1		0	4	-2	1	
				• .		~			

a. What are the values of the basic variables at this iteration?

 $X_4 = 2, X_3 = 3, X_1 = 1, X_7 = 4$

a. What are the values of the simplex multipliers?

$$\pi_1 = 0$$
, $\pi_2 = -15$, $\pi_3 = \boxed{8}$, $\pi_4 = \boxed{0}$

b. What is the *reduced cost* of the variable X_2 ? <u>-80</u>

c. Will entering X_2 into the basis result in an improvement? <u>YES</u>

d. What is the substitution rate of the nonbasic variable X_2 for the basic variable X_3 ? <u>12</u>

(This means that an increase of 1 unit of X_2 will result in a (*check*: __increase or _X_decrease?) of __12_ units in X_3).

4. Revised Simplex Method. Consider the initial LP tableau for a MINIMIZATION problem:

-Z	X1	X2	X3	X4	X5	X6	X7	b
1	15	1	8	0	0	0	0	0
0	1	-1	1	1	0	0	0	8
0	1	1	0	0	1	0	0	1
0	10	2	1	0	0	1	0	14
0	0	-1	2	0	0	0	1	10

At a later iteration, besides -z, the basic variables are (in order) X_4 , X_3 , X_1 , X_7 (i.e., the basis is B={4, 3, 1, 7} and the basis inverse matrix is

[1	1	1	0	_I	1	9	-1	0
0	0	1	0	_	0	-10	1	0
0	1	10	0	_	0	1	0	0
0	2	0	1		0	20	-2	1

a. What are the values of the basic variables at this iteration?

 $X_4 = 3, X_3 = 4, X_1 = 1, X_7 = 2$

$$\pi_1 = 0$$
, $\pi_2 = -65$, $\pi_3 = 8$, $\pi_4 = 0$

b. What is the *reduced cost* of the variable X_2 ? <u>50</u>

c. Will entering X_2 into the basis result in an improvement? <u>NO</u>

d. What is the substitution rate of the nonbasic variable X_2 for the basic variable X_3 ? <u>-8</u>

(This means that an increase of 1 unit of X_2 will result in a (*check*: <u>X</u> increase or <u>______</u> decrease?) of <u>___8</u> units in X₃).

5. *Transportation Problem.* The following is a transportation tableau, with an initial set of shipments indicated: 1 2 3 4 SUPPLY

- a. Is the solution above a basic feasible solution? YES If not, explain why!
- b. Complete the computation of a set of dual variables for the above transportation tableau, starting by assigning the dual variable for source #1 equal to zero:

Dual variables for supply constraints: $U_1 = 0$, $U_2 = -2$, $U_3 = -1$, $U_4 = +3$ Dual variables for demand constraints: $V_1 = 6$, $V_2 = 4$, $V_3 = 4$, $V_4 = 9$

- c. Compute the reduced costs for X_{13} <u>4</u> & X_{44} <u>-6</u> Which of these two variables should enter the basis? X_{44} Which basic variable should leave the basis? X_{14}
- d. Suppose that the supply of source C were to increase from 5 to 10.
 Why is the problem no longer "balanced"? <u>sum of supplies not equal to sum of demands</u> What must be done to balance the problem? <u>add a "dummy" destination with demand = 5</u>

5. *Transportation Problem.* The following is a transportation tableau, with an initial set of shipments indicated: **DESTINATIONS**

- a. Is the solution above a basic feasible solution? YES If not, explain why!
- b. Complete the computation of a set of dual variables for the above transportation tableau, starting by assigning the dual variable for source #1 equal to zero:
 - Dual variables for supply constraints: $U_1 = 0$, $U_2 = 2$, $U_3 = +3$, $U_4 = +2$ Dual variables for demand constraints: $V_1 = 8$, $V_2 = 5$, $V_3 = 0$, $V_4 = 9$
- c. Compute the reduced costs for $X_{13}_{-}6_{-}$ & $X_{44}_{-}5_{-}$ Which of these two variables should enter the basis? X_{44} Which basic variable should leave the basis? X_{14}
- d. Suppose that the supply of source C were to increase from 5 to 10.
 Why is the problem no longer "balanced"? <u>sum of supplies not equal to sum of demands</u> What must be done to balance the problem? <u>add "dummy" destination with demand = 5</u>