Name or Initials

 Image: A state of the stat

• Write your name on the first page, and initial the other pages.

• Answer both questions of Part One, and 2 problems from Part Two.

• Any questions remaining may be considered a "take-home" exam, for ½ credit, making maximum 90.

		Possible	Score
Part One:	1. True/False	15	
	Sensitivity analysis (LINDO)	25	
Part Two:	3. Geometry & Duality of LP	20	
	4. Decision Analysis	20	
	5. Transportation & Assignment problems	<u>20</u>	
	total:	80	

(1.) *True/False:* Indicate by "+" or "o" whether each statement is "true" or "false", respectively:

- _____ a. If the optimal value of a slack variable of a primal LP constraint is positive, then the optimal value of the dual variable for that same constraint must equal zero.
- b. In reference to LP, the terms "dual variable", "shadow price", and "simplex multiplier" are synonymous.
- _____ c. If you make a mistake in choosing the pivot row in the simplex method, the next basic solution will have one or more negative basic variables.
- ____ d. If the primal LP feasible region is nonempty and bounded, then the dual LP cannot be unbounded nor infeasible.
- ____ e. The number of basic variables of a transportation problem with m sources and n destinations is m+n+1.
- _____ f. If the current basis is not degenerate, the dual variables at any iteration of the simplex method for solving a transportation problem are uniquely determined.
- _____ g. If a basic feasible solution of a transportation problem is degenerate, the next iteration cannot result in an improvement of the objective.
- h. The two-phase simplex method solves for the dual variables in phase one, and then solves for the primal variables in phase two.
- . If you make a mistake in choosing the pivot column in the simplex method, the next basic solution will be infeasible.
- _____ j. If there is a tie in the minimum ratio test of the simplex method, the tableau that follows will be degenerate.
- k. During a change of basis in the simplex method for the transportation problem, the "substitution rates" are all +1, 0, or -1.
- 1. If a slack variable of a primal LP constraint is zero in the optimal solution, then there is a corresponding dual variable whose optimal value is also zero.
- m. In a transportation problem with 4 sources and 6 destinations, with total supply exceeding total demand, the number of basic variables will be 10.
- n. If the right-hand-side of a "greater-than-or-equal" constraint is increased, the objective function will either remain the same or improve.
- _____ o. The "complementary slackness condition" of LP implies that in the output of the optimal solution, either the slack (or surplus) in a constraint or its dual variable (or both) must be zero.
- 2. Sensitivity Analysis in LP. Consult the LINDO output to answer the questions below:
 - □ During the next two months, General Cars must meet (on time) the following demands for trucks and cars: Month 1: 400 trucks, 800 cars; Month 2: 300 trucks, 300 cars.
 - During each month, at most 1000 vehicles can be produced. Each truck uses 2 tons of steel, and each car uses 1 ton of steel.
 - During month 1, steel costs \$400 per ton; during month 2, steel costs \$600 per ton.

- □ At most 1500 tons of steel may be purchased each month (steel may only be used during the month in which it is purchased).
- □ At the beginning of month 1, 100 trucks and 200 cars are in inventory.
- □ At the end of each month, a holding cost of \$150 per vehicle is assessed.
- □ Each car gets 20 mpg (miles per gallon), and each truck gets 10 mpg. During each month, the vehicles produced by the company must average at least 16 mpg.

The company wishes to meet the demand and mileage requirements at minimum cost (including steel costs and holding costs).

Define variables:

- C1 = number of cars to be produced in month 1
- C2 = number of cars to be produced in month 2
- T1 = number of trucks to be produced in month 1
- T2 = number of trucks to be produced in month 2
- S1 = tons of steel used in month 1
- S2 = tons of steel used in month 2
- *IC1* = number of cars in inventory at end of month 1
- *IT1* = number of trucks in inventory at end of month 1
- IC2 = number of cars in inventory at end of month 2
- *IT2* = number of trucks in inventory at end of month 2

LINDO output:

MIN	400	S1	+	600	S2	+	150	IC1	+	150	IT1	+	150	IC2	+	150	IT2	
SUBJECT	TO																	
:	2)	C1	+	т1 -	<=		1000											

	3) C2 +	T2 <= 1000		
	4) - S1 +	C1 + 2 T1 =	0	
	5) - S2 +	C2 + 2 T2 =	0	
	6) - IC1	+ C1 >= 600		
	7) - IT1	+ T1 >= 300		
	8) IC1	- IC2 + C2 >=	300	
	9) IT1	- IT2 + T2 >=	300	
	10) 4 C1	- 6 T1 >= 0		
	11) 4 C2	- 6 T2 >= 0		
END	,			
SUB	S1	1500.00000	! Note simple upper bound	ls on S1 & S2
SUB	s2	1500.00000		

LP OPTIMUM FOUND AT STEP 8

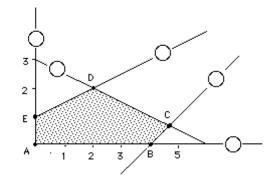
OBJEC	TIVE	FUNCTION	VALUE
1)	99	95000.0	

VARIABLE	VALUE	REDUCED COST
S1	1400.000000	0.000000
S2	700.000000	0.000000
IC1	0.00000	0.00000
IT1	100.000000	0.000000
IC2	0.00000	750.000000
IT2	0.00000	1350.000000
C1	600.000000	0.00000
T1	400.000000	0.00000
C2	300.000000	0.00000
т2	200.000000	0.00000
ROW	SLACK OR SURPLUS	DUAL PRICES
2)	0.00000	130.000000
3)	500.000000	0.00000
4)	0.00000	400.000000
5)	0.00000	600.000000
6)	0.00000	-450.000000
7)	0.00000	-1050.000000
8)	0.00000	-600.000000
9)	0.00000	-1200.000000
10)	0.00000	-20.000000
11)	0.00000	0.00000

Name or Initials

- b. Would the production plan need to be revised if the cost of steel in month 1 were to increase by \$100/ton? Yes No
- c. Suppose that the holding cost of vehicles is increased to \$160/month. Should the production plan be revised? Yes No
- d. If the demand for trucks in month 1 were to increase by 10, what would be the effect on the total cost? \$____ (increase or decrease?)
- d. By using the substitution rates in the tableau, determine what would be the effect on the production plan if the demand for trucks in month 1 were to increase by 10.

Hint: What nonbasic variable would be changed by 10, and in which direction? Van Ch


110000	main nonbasie vanable would be changed by I	o, unu m	mach anc	cnon.
		Var.	Change	direction
tons	of steel used in month 1	S1		increase? Decrease?
# of	cars to be produced in month 1	C1		increase? Decrease?
# of	trucks to be produced in month 1	т1		increase? Decrease?
# of	cars in inventory, end of month 1	IC1		increase? Decrease?
# of	trucks in inventory, end of month 1	IT1		increase? Decrease?
tons	of steel used in month 2	S2		increase? Decrease?
# of	cars to be produced in month 2	C2		increase? Decrease?
# of	trucks to be produced in month 2	т2		increase? Decrease?

I DIDIDIDI PART TWO IDIDIDIDI

3. Geometry & Duality of the Linear Programming. Consider the following LP problem:

Maximize	$3X_1 + 2X_2$			
subject to	x ₁ - x ₂	\leq	4	(1)
	$-x_1 + 2x_2$	\leq	2	(2)
	$x_1 + 2x_2$	\leq	6	(3)
	x ₁ 0			(4)
	X ₂ 0			(5)

Let x_3 , x_4 , & x_5 be the slack variables for constraints (1)-(3). Below is a graph of the feasible region:

(a.) The feasible region is a polyhedron with 5 edges. Indicate which constraint defines each edge by labeling the edges (in the circles) on the graph, using the numbers (1) through (5) to the right of the constraints above.

(b.) How many basic variables must this LP problem have?

(c.) Which variables (including slacks) are basic at the extreme point labeled (D)?

RANGES IN	WHICH THE						
VARIABLE	CII	OBJ RRENT	COEFFICIE ALLOWAB		ALLOWABLE		
VARIABLE		OEF	INCREAS		DECREASE		
S1	400.0		92.8571		INFINITY		
52	600.0		INFINI		92.857147		
IC1	150.0		216.6666		200.000000		
IT1	150.0		200.0000		INFINITY		
IC2	150.0	00000	INFINI	ГҮ	750.000000		
IT2	150.0	00000	INFINI	ГҮ 1	350.000000		
C1		00000	216.6666		200.000000		
T1		00000	200.0000		INFINITY		
C2		00000	200.0000		216.666656		
т2	0.0	00000	INFINI	Γ.Χ	200.000000		
ROW	CU	RIG RRENT	HTHAND SID ALLOWAB		ALLOWABLE		
		RHS	INCREAS		DECREASE		
2	1000.0	00000	71.4285	74	0.00000		
3	1000.0		INFINI		500.000000		
4		00000	1400.0000		100.000000		
5		00000	700.0000		800.000000		
6 7		00000	0.0000		0.000000 200.000000		
8	300.0		500.0000		0.000000		
9	300.0		0.0000		200.000000		
10		00000	0.0000		0.000000		
11	0.0	00000	0.0000	00	INFINITY		
THE TABLE	AU						
ROW 1	(BASIS) ART	S1 0.000	S2 0.000	IC1 0.000	IT1 0.000	IC2 750.000	1
2	IC1	0.000	0.000	1.000	0.000	0.000	1.
3	SLK 3	0.000	0.000	0.000	0.000	1.000	
4	S1	1.000	0.000	0.000	0.000	0.000	
5	S2	0.000	1.000	0.000	0.000	-1.000	
6	C1	0.000	0.000	0.000	0.000	0.000	
7	T1	0.000	0.000	0.000	0.000	0.000	
8	C2	0.000	0.000	0.000	0.000	-1.000	
9	SLK 11	0.000	0.000	0.000	0.000	-4.000	
10 11	IT1	0.000 0.000	0.000 0.000	0.000	1.000 0.000	0.000	
11	Т2	0.000	0.000	0.000	0.000	0.000	
ROW 1	C1 0.000	T1 0.000	C2 0.000	T2 0.000	SLK 2 130.000	SLK 3 0.000	,
2	0.000	0.000	0.000	0.000	0.600	0.000	-
3	0.000	0.000	0.000	0.000	1.000	1.000	
4	0.000	0.000	0.000	0.000	1.400	0.000	
5	0.000	0.000	0.000	0.000	-1.400	0.000	
6	1.000	0.000	0.000	0.000	0.600	0.000	
7	0.000	1.000	0.000	0.000	0.400	0.000	
8	0.000	0.000	1.000	0.000	-0.600	0.000	
9	0.000	0.000	0.000	0.000	0.000	0.000	
10 11	0.000 0.000	0.000 0.000	0.000 0.000	0.000 1.000	0.400	0.000 0.000	
ROW	SLK 7	SLK 8	SLK 9	SLK 10	SLK 11	RHS	
1	0.10E+04	0.60E+03	0.12E+04	20.		-0.10E+0	7
2	0.000	0.000	0.000	-0.100	0.000	0.00	
3	1.000	1.000	1.000	0.000	0.000	500.00	
4	0.000	0.000	0.000	0.100	0.000	1400.00	
5	-2.000	-1.000	-2.000	-0.100	0.000	700.00	
6 7	0.000 0.000	0.000	0.000	-0.100 0.100	0.000	600.00 400.00	
8	0.000	-1.000	0.000	0.100	0.000	400.00	
0	0.000	-1.000	0.000	1 000	1 000	300.00	

a. Suppose that the cost of steel in month 1 were to increase by \$50/ton. Would the production plan need to be revised? Yes No

1.000

0.100

-0.100

1 000

0.000

0.000

6 000

0.000

-1.000

6.000

1.000

-1.000

9

10 11 -4.000

0.000

0.000

IT2

0.000 1.000

0.000

-2.000

0.000

0.000

0 000

6.000

0.000

-1.000

SLK 6

1.000

1.000

0.000

-1.000

0.000

0.000

-1.000

-4.000

0.000

0.000

450.000

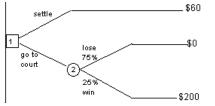
0 000

100.000

200.000

1350.000

56:171 O.R. Midterm Exam


- (d.) Suppose that during the simplex method, a move is made from the extreme point labeled (D), i.e., $X = (\frac{14}{3}, \frac{2}{3})$. Which variable entered the basis?_____ Which variable left the basis?_____
- (f.) Write the dual of the LP above, using variables Y_1 , Y_2 , etc.

Given: Point C is optimal, with objective value $15^{1}/_{3}$.

(g.)	What can	be said about th	e optimal values of the du	al variables?
	v	manual ha mana	- manat ha mammana	······································

\mathbf{Y}_1 must be zero	b must be nonzero undetermined
Y2 must be zero	must be nonzero undetermined
Y ₃ must be zero	must be nonzero undetermined
Y ₄ must be zero	must be nonzero undetermined
Y ₅ must be zero	must be nonzero undetermined
Y ₆ must be zero	must be nonzero undetermined

4. Decision Analysis. General Custard Corporation is being sued by Sue Smith. Sue can settle out of court and win \$60,000, or she can go to court. If she goes to court, there is a 25% chance that she will win the case (*event W*) and a 75% chance she will lose (*event L*). If she wins, she will receive \$200,000, and if she loses, she will net \$0. A decision tree representing her situation appears below, where payoffs are in thousands of dollars:

_____1. What is the decision which maximizes the expected value? a. settle b. go to court

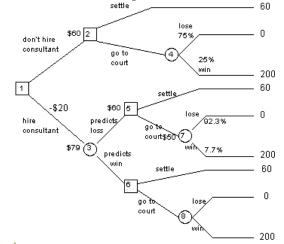
For \$20,000, Sue can hire a consultant who will predict the outcome of the trial, i.e., either he predicts a loss of the suit (*event PL*), or he predicts a win (*event PW*). The consultant is correct 80% of the time.

 2. The probability th	at the consultant will p	predict a win, i.e. P{PW} is (choose nearest value)
a. ≤25%	b. 30%	c. 35%
d. 40%	e. 45%	f. ≥ 50%

Bayes' Rule states that if S_i is one of the *n* states of nature and O_i is the outcome of an experiment,

$$\left\{ S_{i} \middle| O_{j} \right\} = \frac{P\left\{ O_{j} \middle| S_{i} \right\} P\left\{ S_{i} \right\}}{P\left\{ O_{j} \right\}}, \text{ where } P\left\{ O_{j} \right\} = \sum_{k=1}^{n} P\left\{ O_{j} \middle| S_{k} \right\} P\left\{ S_{k} \right\}$$

 3. According to Bayes' theorem, the conditional probability that, if the consultant predicts a win, then in fact Sue will win, i.e. P{W | PW}, is (choose nearest value)

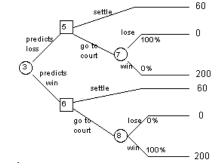

 a. ≤30%
 b. 40%
 c. 50
 d. 60%

 e. 70%
 f. 80%
 f. ≥ 90%

The decision tree below includes Sue's decision as to whether or not to hire the consultant. Note that the

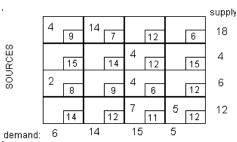
consultant's fee have not yet been deducted from the "payoffs" on the far right.

4. Write the probabilities on the branches emanating from nodes 3 and 8.

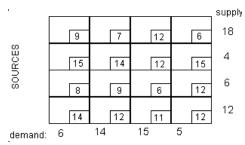

Note that some of the nodes have been "folded back".

5. Should Sue hire the consultant? Circle: Yes No

 6.	The expected	value of	the consultant's	opinion is (in <u>thousands</u> of	\$) (Choose nearest value):


a. ≤16	b. 17	c. 18	d. 19
e. 20	f. 21	g. 22	h. ≥23

Suppose that "perfect information" were given to Sue at no cost, i.e., a prediction which is *100% accurate*, so that the portion of the tree containing nodes 3, 5, 6, 7, & 8 would appear as below:



 7. What would be th	ne expected value of no	de 3? (Choose neares	t value, in thousands of \$)			
a. ≤10	b. 15	c. 20	d. 25			
e. 30	f. 35	g. 40	h. ≥45			
 8. What would be the expected value of perfect information (EVPI)? (Choose nearest value thousands of \$)						
a. ≤10	b. 15	c. 20	d. 25			
e. 30	f. 35	g. 40	h. ≥45			

 (a) Transportation Problem. The following is a transportation tableau, with an initial set of shipments indicated: DESTINATIONS


- a. Is the solution above basic? ____ If not, explain why!
- c. Complete the computation of a set of dual variables for the above transportation tableau: Dual variables for supply constraints: U₁ = 0, U₂ = ___, U₃ = __1, U₄ = ____ Dual variables for demand constraints: V₁ = _9_, V₂ = _7_, V₃ = _7_, V₄ = ____
- c. Compute the reduced costs for $X_{14}__$ & $X_{32}__$
- d. Is the above solution optimal? Explain why or why not!
- e. If <u>not</u> optimal, perform one iteration to improve the solution, and write the result below: DESTINATIONS

(b) Assignment Problem. Three machines are to be assigned to three jobs (one machine per job), so that total machine hours used is minimized. The hours required by each machine for the jobs is given in the table below.

			JOB		
		1	2	3	
M A C	A	4	2	9	
с Н I	в	2	1	5	
N E	C	5	2	10	

a. Perform the row reduction step of the Hungarian method. (Write the updated matrix below.)

b. Perform the column reduction step, and write the updated matrix below:

c. Are any further steps required? If so, perform them, and write the resulting matrices below:

d. Find the optimal assignment:

- Machine A performs job _____. Machine B performs job _____.
- Machine C performs job ____.
- e. Total machine hours required is _____.
- e. This assignment problem can be modeled as an LP with _____ constraints (plus nonnegativity) and _____ variables. The number of basic variables will be _____. The number of variables which are positive will be _____. The optimal solution would therefore be classified as a _d______ solution.