56:171 Operations Research	▼▲▼▲▼▲▼
Midterm Examination	
October 21, 1998	▼▲▼▲▼▲▼
	56:171 Operations Research Midterm Examination October 21, 1998

....

• Write your name on the first page, and initial the other pages.

• Answer both Parts A and B, and 4 (out of 5) problems from Part C.

		Possible	Score
Part A:	True/False	15	
Part B:	Sensitivity analysis (LINDO)	25	
Part C:	1. Simplex method	15	
	2. LP duality	15	
	3. Transportation problem	15	
	4. Project scheduling	15	
	5. Decision analysis	15	
	total possible:	100	

VAVAVAV PART A VAVAVAV

1. *True/False:* Indicate by "+" or "o" whether each statement is "true" or "false", respectively:

- a. If there is a tie in the "minimum-ratio test" of the simplex method, there will be no improvement in the objective in this iteration.
- b. If the primal LP feasible region is nonempty and unbounded, then the dual LP is infeasible.
- c. Data Envelopment Analysis (DEA) is an application of linear programming.
- d. In PERT, the total completion time of the project is assumed to have a normal distribution.
- e. All tasks on the critical path of a project schedule have their latest finish time equal to their earliest finish time.
- f. The transportation problem is a special case of an assignment problem.
- g. The critical path in a project network is the longest path from a specified source node (beginning of project) to a specified destination node (end of project).
- h. There is at most one critical path in a project network.
- i. The latest times of the events in a project schedule must be computed before the earliest times of those events.
- j. If the optimal value of a slack variable of a primal LP constraint is zero, then the optimal value of the dual variable for that same constraint must be positive.
- k. If the optimal value of a slack variable of a primal LP constraint is positive, then the optimal value of the dual variable for that same constraint must be zero
- 1. For any LP, the "DUAL PRICE" reported by LINDO is the same as the "DUAL VARIABLE".
- m. The values in a "regret" table of a decision problem are always nonnegative.
- n. Bayes' rule gives the value of a joint probability of a "state of nature" and the outcome of an experiment.
- o. If they are both feasible, the optimal objective value of an LP problem is the same as the optimal objective value of the dual of its dual problem.

VAVAVAV PART B VAVAVAV

Sensitivity Analysis: Consider the Gasoline Blending Problem (which is found in the lecture notes): A refinery buys four "raw" gasolines and blends them to produce three types of fuel:

Raw	Octane	Available	Price
Gas type	Rating	(barrels/day)	(\$/barrel)
1	68	4000	31.02
2	86	5050	33.15
3	91	7100	36.35
4	99	4300	38.75

Fuel blend	Minimum	Selling price	Demand pattern
1	95	45.15	≤ 10,000
2	90	42.95	any amt. can be sold
3	85	40.99	≥ 15,000

Raw gasolines not used in blending can be sold at

- 38.95/barrel if octane rating ≥ 90 •
- 36.85/barrel if octane rating < 90

Define variables:

- X_{ij} = barrels/day of raw gasoline of type i used in making fuel type j (i=1,2,3,4; j=1,2,3) •
- Y_i = barrels/day of raw gasonline of type i sold "as is" on the market (i=1,2,3,4) •

```
LINDO output: MAX 14.13 X11 + 12 X21 + 8.8 X31 + 6.4 X41 + 11.93 X12 + 9.8 X22
       + 6.6 X32 + 4.2 X42 + 9.97 X13 + 7.84 X23 + 4.64 X33 + 2.24 X43
       + 5.83 Y1 + 3.7 Y2 + 2.6 Y3 + 0.2 Y4
 SUBJECT TO
         2) - 27 X11 - 9 X21 - 4 X31 + 4 X41 >=
                                                  0
        3) - 22 \times 12 - 4 \times 22 + \times 32 + 9 \times 42 >=
                                                0
         4) ??? X13 + X23 + 6 X33 + 14 X43 >=
                                                 0
            X11 + X12 + X13 + Y1 <= 4000
         5)
         6)
            X21 + X22 + X23 + Y2 <=
                                        5050
         7)
            X31 + X32 + X33 + Y3 <= 7100
        8)
            X41 + X42 + X43 + Y4 <=
                                        4300
        9) X11 + X21 + X31 + X41 <=
                                        10000
       10) X13 + X23 + X33 + X43 >=
                                        15000
```

END

OBJECTIVE FUNCTION VALUE 1) 140216.5

VARIABLE	VALUE	REDUCED COST
x11	0.00000	0.00000
x21	0 000000	0 000000
x31	2453 703613	0 000000
x41	2453 703613	0.000000
x12	0 000000	0 000000
x22	0.000000	0.542424
x32	0.000000	0.512121
x42	0.000000	0.000000
x12 x13	3457 407471	0.000000
x23	5050 000000	0.000000
x23	4646 296387	0.000000
x43	1846 296265	0.000000
v1	542 592590	0.000000
v2	0 000000	5 533333
v3	0.000000	4 970370
15 V4	0.000000	7 429630
11	0.000000	7.429030
ROW	SLACK OR SURPLUS	DUAL PRICES
2)	0.00000	-0.307407
3)	0.00000	-0.277273
4)	0.00000	-0.307407
5)	0.00000	5.830000
6)	0.00000	9.233334
7)	0.00000	7.570370
8)	0.00000	7.629630
9)	5092.592773	0.00000
10)	0.00000	-1.085926

RANGES IN	WHICH THE BASIS	IS UN	ICHANGED:				
		OBJ C	COEFFICIENT	RANGES			
VARIABLE	CORRENT		ALLOWABLE	A.	LLOWABLE		
x 11	14 130000		0 000000	D.	INFINITV		
x21	12.000000		0.000000		INFINITY		
X31	8.800000		INFINITY		0.00000		
X41	6.400000		0.00000		1.627273		
X12	11.930000		2.283539		2.983334		
X22	9.800000		0.542424		INFINITY		
X32	6.600000		0.693098		INFINITY		
X42	4.200000		0.934175		INFINITY		
XI3 XDD	9.970000		1.627273		0.000000		
X23	7.840000				1 207331		
x43	2 240000		1 627273		0 000000		
¥1	5.830000		6.100000		2.932000		
Y2	3.700000		5.533334		INFINITY		
¥3	2.600000		4.970370		INFINITY		
¥4	0.200000		7.429630		INFINITY		
		RIGHT	THAND SIDE	RANGES			
ROW	CURRENT		ALLOWABLE	A	LLOWABLE		
	RHS		INCREASE	D	ECREASE		
2	0.000000	17	/096.773438	1465	0.000000		
3	0.000000	0.7	0.000000	1193	7.037109		
4 5	4000 000000	93	70.000000 VTNFINTTV	1405	2 592590		
6	5050.000000	F	538.888672	162	7.777710		
7	7100.000000	4	334.782227	366	2.500000		
8	4300.000000	3	3662.500000	427	4.193359		
9	10000.000000		INFINITY	509	2.592773		
10	15000.000000	1	465.000000	586	4.706055		
THE TABLE	LAU						
ROW	(BASIS)	X11	X21	X31	X41	X12	X22
1	ART 0.	000	0.000	0.000	0.000	0.000	0.542
2	X31 3.	875	1.625	1.000	0.000	0.000	0.333
3	X12 0.	000	0.000	0.000	0.000	1.000	0.182
4	X13 1. v22 2	000	0.000	0.000	0.000	0.000	-0.333
5	x23 0	000	1 000	0.000	0.000	0.000	1 000
7	x41 -2.	875	-0.625	0.000	1.000	0.000	0.333
8	x43 2.	875	0.625	0.000	0.000	0.000	-0.333
9	SLK 9 0.	000	0.000	0.000	0.000	0.000	-0.667
10	Y1 0.	000	0.000	0.000	0.000	0.000	0.152
ROW	X32	X42	X13	X23	X33	X43	Y1
1	0.693 0.	934	0.000	0.000	0.000	0.000	0.000
2	0.426 0.	574	0.000	0.000	0.000	0.000	0.000
3	-0.045 -0.	409	0.000	0.000	0.000	0.000	0.000
4	-0.148 0.	148 574	1.000	0.000	0.000	0.000	0.000
5	0.074 -0.	000	0.000	1 000	1.000	0.000	0.000
7	0.426 0.	574	0.000	0.000	0.000	0.000	0.000
8	-0.426 0.	426	0.000	0.000	0.000	1.000	0.000
9	-0.852 -1.	148	0.000	0.000	0.000	0.000	0.000
10	0.194 0.	261	0.000	0.000	0.000	0.000	1.000
ROW	¥2	¥3	¥4	SLK 2	SLK 3	SLK 4	SLK 5
1	5.533 4.	970	7.430	0.307	0.277	0.307	5.830
2	0.333 0.	426	0.574	0.144	0.000	0.019	0.000
3	0.000 0.	000	0.000	0.000	0.045	0.000	0.000
4	-0.333 -0.	⊥48 ⊑74	0.148	0.037	0.000	0.037	0.000
5	-0.333 0.	5/4 000	-0.574	-0.144	0.000	-0.019	0.000
6 7	1.000 U.	426	0.000	-0 106	0.000	0.000	0.000
י א	-0.333 -0	426	0,426	0,106	0.000	-0.019	0.000
9	-0.667 -0.	852	-1.148	-0.037	0.000	-0.037	0.000
10	0.333 0.	148	-0.148	-0.037	-0.045	-0.037	1.000

ROW	SLK 6	SLK 7	SLK 8	SLK 9	SLK 10		
1	9.2	7.6	7.6	0.00E+00	1.1	0.14E+06	
2	0.333	0.426	0.574	0.000	0.315	2453.704	
3	0.000	0.000	0.000	0.000	0.000	0.000	
4	-0.333	-0.148	0.148	0.000	-0.370	3457.407	
5	-0.333	0.574	-0.574	0.000	-0.315	4646.296	
б	1.000	0.000	0.000	0.000	0.000	5050.000	
7	0.333	0.426	0.574	0.000	0.315	2453.704	
8	-0.333	-0.426	0.426	0.000	-0.315	1846.296	
9	-0.667	-0.852	-1.148	1.000	-0.630	5092.593	
10	0.333	0.148	-0.148	0.000	0.370	542.593	
 1. How	w many <u>thou</u>	usands of ba	arrels/day of	blend #1 sho	ould be pro	duced? (choose	e nearest number!)
a. no	one	Ŀ	o. one		c. two		d. five
e. tei	n	e	e. fifteen		f. twenty	7	g. fifty
 2. How	v many <u>thou</u>	<u>usands</u> of ba	arrels/day of	blend #2 sho	uld be pro	duced? (choose	e nearest number!)
a. no	one	t	o. one		c. two		d. five
e. tei	n	e	e. fifteen		f. twenty	7	g. fifty
3. How	w many raw	gasolines s	hould be so	ld on the mar	ket instead	l of (or in additi	on to) being used in
 blendin	g?	C					<i>,</i> U
a. no	one	ŀ	o. one		c. two		
d th	ree	e	four				
4 Who	t is the mis	aina aaaffi	iont in mour	4 of the ID m	adal (whi	ah impagas tha	minimum aatana
 4. W II	a is the mis	sing coeffic	cient in row	4 of the LP II	iodel (will	ch imposes the	minimum octane
require	ment for blo	end #3)? (C	hoose neare	est number!)			
a3	0	t	o20		c10		d. zero
e. +1	0	f	. +20		g. +30		h. +50
					-		

In the optimal solution, raw gasoline type #4 is <u>not</u> sold on the market, even though it can be sold for more than the price paid by the refinery.

5. What increase in the selling price of raw gasoline #4 would be required in order to make its sale optimal? (Choose nearest number!) a. \$1 b. \$2 d. \$8 c. \$5 e. \$10 f. \$15 g. \$20 h. \$50 6. What would be the change in the quantity of raw gasoline #1 sold on the market, if 100 barrels of raw gasoline #4 were sold on the market? (*Choose nearest number!*) c. decrease 5 a. decrease 15 b. decrease 10 d. no change e. increase 5 f. increase 10 g. increase 15

7100 barrels/day of raw gasoline #3 is now available for \$36.35/barrel.

7. If 100 additional barrels would be available, by how much would the refinery be able to increase its profit? (*Choose nearest number*!)

a. 0	b. \$1	c. \$10	d. \$100			
e. \$1000	f. \$5000	g. \$10000	h. \$50000			
 8. If 100 additional bar	rels of raw gasoline #3 we	re available, what would be	the effect on the			
quantity of raw gasoline #4 used in blend #1? (Choose nearest number!)						
a. decrease 100	b. decrease 50	c. decrease 10	d. no change			
e. increase 10	f. increase 50	g. increase 100	h. increase 500			

VAVAVAV PART C VAVAVAV

1. Simplex Algorithm for LP: At an intermediate step of the simplex algorithm, in which the objective is to be **minimized**, the tableau is:

⁻ z	x_1	x ₂	x ₃	x ₄	X ₅	x ₆	RHS			
1	0	0	0	-2	0	6	-10			
0	2	0	1	-4	0	1	4			
0	0	1	0	1	0	-1	3			
0	-2	0	0	2	1	3	1			
1. W	hat are th -Z	he basic	: variab X ₁	les for X_2	this tabl X	leau? (<i>ci</i> 3	rcle): X4	X5 X6		
2. T	he currer	nt value	of the	cost for	this ba	sic solut	ion is (<i>ci</i>	<i>rcle:</i> +10 or -	-10)	
 3. T	he currer	nt value	of X ₁	for this	s basic s	solution	is			
	a. 0		b	. 1		c. 3		d. 4	e. 10	
 4. T	he currer	nt value	of X ₂	for this	s basic s	solution :	15		10	
5 In	a. 0	V	b Id (air	. I alar ind	ranca /	c. 3	a) the chi	d. 4	e. 10	
 5. III					rease /		e) the obje	ective function	1.	
 6. W	nat is the	e substit	ution r	ate of X	4 for 2	×5?				
 7. If	a. 0 X4 were	increas	b ed by 2	. 1 2 units, 1	the valu	c1 ie of X5	will	d. 2	e2	
	a. no	ot chang	ge		b. incr	ease by 2	2	c. decrease	by 2	
	d. in	crease l	by 4		e. decr	ease by	4	f. none of t	he above	
 8. If	the origin	nal cons	straints	were al	ll of typ	e "≤" wl	here X4,	X_5 , and X_6 as	re slack variables, th	he
value	of the fi	rst dual	variab	le π_1 co	orrespor	nding to	the tablea	u given above	e is	
	a. 0		b	. 1		c1		d. 2	e2	
	f. no	one of th	ne abov	e		g. can	not be de	termined		
 9. If	the origination of the original sector of the	nal con	straints	were o	f type "	\geq " and X	K4, X5, ar	nd X ₆ are surp	olus variables, the v	alue
of the	e second	dual va	riable $ au$	t ₂ corre	spondiı	ng to the	tableau a	bove is		
	a. 0		b	. 1		c1		d. 2	e2	
	f. no	one of th	ne abov	e		g. can	not be de	termined		
10 F	Perform a	nivot t	o impr	ove the	objectiv	ve functi	on and c	omplete the bl	lank entries in the t	ableau below.
-2		X ₂		XA	X ₅	X ₂	RHS		lank entries in the a	ioleau below.
				F						
	<u> </u>	<u> </u>			<u>illi</u>					
 11. Th	e improv	ement i	n the o	bjective	resulti	ng from	the pivot	in (11) is		
(choc	ose the ne	earest v	alue)		1	1			2	
a. ze	ro				b.	1		с.	Z	

d. 3

_

_

_

e. 4

f. ≥5

2. LP Duality: Consider the (primal) LP

Min w =
$$4X_1 + 2X_2 - X_3$$

s.t. $X_1 + 2X_2 \le 6$
 $X_1 - X_2 + 2Y_3 = 8$
 $X_1 \ge 0, X_2 \ge 0$ (X₃ unrestricted in sign)

- a. The dual of this LP will have _____ variables.
- b. The dual of this LP will have _____ constraints in addition to sign (e.g. nonnegativity) restrictions.
- c. The first dual constraint will be of type (*circle*): $\leq = \geq$
- d. The right-hand-side of the second constraint will be (circle): positive negative zero
- e. The third dual constraint will be of type (*circle*): $\leq = \geq$

The point X=(0, 0, 4) is optimal in the above problem. If the dual variables are denoted by Y_i , which one or more of the below statements must therefore be true? (*Circle*):

i.
$$Y_1 > 0$$

iv. $Y_2 > 0$
iv. $Y_2 = 0$
iii. $Y_1 < 0$
vi. $Y_2 < 0$
vii. None of the above

3. Transportation Problem: Consider the transportation problem with the tableau below:

	D	Е	F	G	supply
A	4 5	1	4	2	4
В	4	2	3 2	3	8
C	6	3	1	4 2	5
demand	6	3	4	4	

a. If the ordinary simplex tableau were to be written for this problem, how many rows (excluding the objective) will it have? _____

How many variables (excluding the objective value -z) will it have?

- b. Is this transportation problem "balanced?" _____ (yes/no).
- c. How many <u>basic</u> variables will this problem have?
- d. An initial basic feasible solution is to be found using the "Northwest Corner Method"; complete the computation of this solution and write the values of the variables in the tableau above.
- e. If U_1 (the dual variable for the first source) is equal to 0, what is the value of
 - U₂ (the dual variable for the second source)?
 - V1 (the dual variable for the first destination)?
 - V4 (the dual variable for the fourth destination)?
- f. What is the reduced cost of the variable X14? _____ (Explain your computation.)
- g. Will increasing X₁₄ improve the objective function? _____ (yes/no).
- h. Regardless of whether the answer to (f) is "yes" or "no", what variable must leave the basis if X14 enters?_____
- i. What will be the value of X14 if it is entered into the solution as in (h)?

4. Project Scheduling. Consider the project with the A-O-A (activity-on-arrow) network:

- 1. Complete the labeling of the nodes on the network above.
- 2. The number of activities (i.e., tasks), not including "dummies", which are required to complete this project is

The activity durations are given above on the arrows. The Early Times (ET) and Late Times (LT) for each node are written in the box (with rounded corners) beside each node.

3. The early time (ET) indicated by **A** in the network above is:

	a. three	c. five	e. seven	
	b. four	d. six	f. NOTA	
	4. The late time (LT) ndicated by B	in the network above is:		
	a. three	c. five	e. seven	
	b. four	d. six	f. NOTA	
	5. The slack ("total float") for activi	ty C is		
	a. zero	c. two	e. four	
	b. one	d. three	f. NOTA	
	6. Which activities are critical? (circ	cle: A B C D E F G H I J)	
	7. The earliest completion time for t	he project is		
	a. four	c. seven	e. twelve	
	b. five	d. ten	f. NOTA	
Supp	ose that the non-zero durations are ran	dom, with each value in the abo	we network being the <i>expected</i> values an	d
each	standard deviation equal to 1.00. The	en		
	8. The expected earliest completion	time for the project is		
	a. four	c. seven	e. twelve	
	b. five	d. ten	f. NOTA	
	9. The <i>variance</i> σ^2 of the earliest c	ompletion time for the project is	8	
	a. 1 c.	3 e. 5	g. 7	
	b. 2 d.	4 f. 6	h. NOTA	
	10 Add the arrows to complete the	$\mathbf{N} \mathbf{O} \mathbf{N}$ (activity on node) notwo	rk balow for this same project	

10. Add the arrows to complete the A-O-N (activity-on-node) network below for this same project.

5. Decision Trees: General Custard Corporation is being sued by Sue Smith. Sue can settle out of court and win 60,000, or she can go to court. If she goes to court, there is a 25% chance that she will win the case (*event W*) and a 75% chance she will lose (*event L*). If she wins, she will receive 200,000, and if she loses, she will net 0. A decision tree representing her situation appears below, where payoffs are in thousands of dollars:

1. What is the decision which maximizes the expected value?

a. settle b. go to court For \$20,000, Sue can hire a consultant who will predict the outcome of the trial, i.e., either he predicts a loss of the suit (*event PL*), or he predicts a win (*event PW*). The consultant is correct 80% of the time.

 2. The probability that the	e consultant will predict a v	vin, i.e. P{PW} is (choose n	iearest value)
a. ≤25%	b. 30%	c. 35%	
d. 40%	e. 45%	f. ≥ 50%	
 3. According to Bayes' th	eorem, the conditional pro	bability that, if the consult	ant predicts a win
then in fact Sue will win,	i.e. $P\{W \mid PW\}$, is (choos	e nearest value)	
a. ≤40%	b. 45%	c. 50	d. 55%
e. 60%	f. 65%	f. ≥70%	

4. The decision tree below includes Sue's decision as to whether or not to hire the consultant.

7. What would be the expected value of "perfect information" which is *given* to Sue at no cost, i.e., a prediction which is 100% accurate, so that the portion of the tree containing nodes 4, 5, 6, 7, etc., would appear as below? (*Choose nearest value, in thousands of \$*)
a. ≤10 b. 15 c. 20 d. 25
e. 30 f. 35 g. 40 h. ≥45