10101010101 5 C	5:171 Operations Research		
	Midterm Exam Solutions		
	October 19, 1994		
		Possible	Score
A. True/False & Multi-	ple Choice	30	
B. Sensitivity analysis	(LINDO)	20	
C.1. Transportation		15	
C.2. Decision Tree		15	
C.3. Simplex LP Meth	od	<u>15</u>	
-	total possible:	80	
_			

ICICIOIO Part A CICIOIOIO

True/False:

- <u>True</u> 1. A "pivot" in a nonbasic column of an LP simplex tableau will make it a basic column.
- <u>True</u> 2. If you increase the right-hand-side of a "greater-than-or-equal" constraint in a minimization LP, the optimal objective value will either increase or stay the same.
- <u>False</u> 3. The "reduced cost" in LP provides an estimate of the change in the objective value when a right-hand-side of a constraint changes.
- <u>False</u> 4. In the two-phase simplex method, Phase One computes the optimal dual variables, followed by Phase Two in which the optimal primal variables are computed.
- <u>True</u> 5. At the completion of the revised simplex method applied to an LP, the simplex multipliers give the optimal solution to the dual of the LP.
- <u>True</u> 6. In the LP formulation of the project scheduling problem, the constraints include $Y_B Y_A + d_A$ if activity A must precede activity B, where $d_A =$ duration of activity A.
- <u>False</u> 7. In CPM, the "forward pass" is used to determine the latest time (LT) for each event (node).
- <u>True</u> 8. The "minimum ratio test" is used to determine the pivot row in the simplex method.
- <u>True</u> 9. The A-O-N project network does not require any "dummy" activities, except for the "begin" and "end" activities.
- <u>True</u> 10. At the end of the first phase of the two-phase simplex method, the phase-one objective function must be zero if the LP is feasible.
- <u>False</u> 11. In a transportation problem, if the current dual variables $U_2=3$ and $V_4=1$, and $C_{24}=5$, then the current basic solution *cannot* be optimal.
- <u>True</u> 12. In a transportation problem, if the current dual variables $U_2=3$ and $V_4=1$, and $C_{24}=5$, then X_{24} cannot be basic.
- <u>True</u> 13. All tasks on the critical path of a project schedule have their latest finish time equal to their earliest finish time.
- <u>True</u> 14. A "dummy" activity in an A-O-A project network always has duration zero, but can be on the critical path.
- <u>False</u> 15. If a zero appears on the right-hand-side of row i of an LP tableau, then at the next simplex iteration you *cannot* pivot in row i.
- <u>False</u> 16. When maximizing in the simplex method, the value of the objective function will not improve at the next pivot if the current tableau is degenerate.
- <u>False</u> 17. When minimizing in the simplex method, you must select the column which has the smallest (i.e., the most negative) reduced cost as the next pivot column.
- <u>True</u> 18. If the "float" ("slack") of an activity of a project is positive, then the activity cannot be "critical" in the schedule.
- <u>False</u> 19. If a primal minimization LP problem has a cost which is unbounded below, then the dual maximization problem has an objective which is unbounded above.

<u>False</u> 20. If X_{ij} =0 in the transportation problem, then dual variables U and V *must* satisfy C_{ii} = U_i + V_i .

Multiple Choice: Write the appropriate letter (a, b, c, d, or e) : ($NOTA = \underline{N}$ one \underline{of} the \underline{a} bove).

- e 21. If, in the optimal *primal* solution of an LP problem (min cx st Ax≥b, x≥0), there is zero slack in constraint #1, then in the optimal dual solution,
 - (a) dual variable #1 must be zero
- (c) slack variable for dual constraint #1 must be zero
- (b) dual variable #1 must be positive (d) dual constraint #1 must be slack(e) NOTA
- <u>c</u> 22. If, in the optimal *dual* solution of an LP problem (min cx st Ax b, x 0), variable #2 is positive, then in the optimal primal solution,
 - (a) variable #2 must be zero
- (c) slack variable for constraint #2 must be zero
- (b) variable #2 must be positive
- (d) constraint #2 must be slack
- (e)NOTA
- <u>b</u> 23. If you make a mistake in choosing the pivot row in the simplex method, the solution in the next tableau
 - (a) will be nonbasic

- (c) will have a worse objective value
- (b) will be nonfeasible
- (d) will be degenerate
- (e) NOTA
- <u>c</u> 24. If you make a mistake in choosing the pivot column in the simplex method, the solution in the next tableau will
 - (a) be nonbasic

(c) have a worse objective value

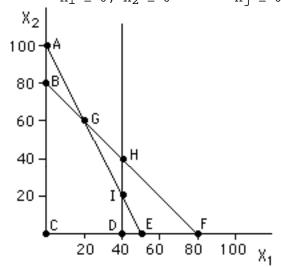
(b) be nonfeasible

- (d) be degenerate
- (e) *NOTA*
- <u>d</u> 25. If there is a tie in the "minimum-ratio test" of the simplex method, the solution in the next tableau
 - (a) will be nonbasic

- (c) will have a worse objective value
- (b) will be nonfeasible
- (d) will be degenerate
- (e) NOTA

The problems (26)-(30) below refer to the following LP: (with inequalities converted to equations:)

Maximize $3X_1 + 2X_2$ Maximize $3X_1 + 2X_2$ subject to $2X_1 + X_2 \le 100$ subject to $2X_1 + X_2 + X_3 = 100$ $X_1 + X_2 \le 80$ $X_1 + X_2 + X_4 = 80$ $X_1 \le 40$ $X_1 + X_2 + X_4 = 40$ $X_1 \ge 0, X_2 \ge 0$ $X_1 \ge 0, j=1,2,3,4,5$



<u>d</u> 26 .The feasible region includes points

```
(c) E, F, H, & I
             (a) I, D, & E
             (b) G. H. & I
                                   (d) B. D. G. I. & C (e) NOTA
             27. At point G, the basic variables include the variables
  <u>c</u>_
             (a) X<sub>2</sub> & X<sub>3</sub>
                                   (c) X_1 & X_5
             (b) X<sub>3</sub> & X<sub>4</sub>
                                   (d) X<sub>1</sub> & X<sub>4</sub>
                                                            (e) NOTA
             28. Which point is degenerate in this problem?
             (a) point B
                                   (c) point H
             (b) point G
                                   (d) point I
                                                            (e) NOTA
             29. If point G is optimal, then which dual variables must be zero, according to the
 f
             Complementary Slackness Theorem?
                 (a) both Y_1 and Y_2
                                                            (d) Y_1 only
                 (b) both Y<sub>1</sub> and Y<sub>3</sub>
                                                            (e) Y<sub>2</sub> only
                 (c) both Y<sub>2</sub> and Y<sub>3</sub>
                                                            (f) Y<sub>3</sub> only
30. For each alternative pair in parentheses, check the appropriate choice to obtain the dual LP of
    the above primal problem (with the inequality constraints):
          (____Max/ _X_Min)
                                                            100Y_1 + 80Y_2 + 40Y_3
                                   2Y_1 + Y_2 + Y_3  (\underline{\quad } \le / \underline{\quad } x \ge )
             subject to
```

DIDIDIDID Part B DIDIDIDI

(___≤ / _X_≥)

LINDO analysis

Problem Statement: McNaughton Inc. produces two steak sauces, spicy Diablo and mild Red Baron. These sauces are both made by blending two ingredients A and B. A certain level of flexibility is permitted in the formulas for these products. Indeed, the restrictions are that:

 $Y_1 (\underline{\hspace{1cm}} \le / \underline{\hspace{1cm}} X_{-} \ge) 0, Y_2 (\underline{\hspace{1cm}} \le / \underline{\hspace{1cm}} X_{-} \ge) 0, Y_3 (\underline{\hspace{1cm}} \le / \underline{\hspace{1cm}} X_{-} \ge) 0$

i) Red Baron must contain no more than 75% of A.

 $Y_1 + Y_2$

ii) Diablo must contain no less than 25% of A and no less than 50% of B

Up to 40 quarts of A and 30 quarts of B could be purchased. McNaughton can sell as much of these sauces as it produces at a price per quart of \$3.35 for Diablo and \$2.85 for Red Baron. A and B cost \$1.60 and \$2.05 per quart, respectively. McNaughton wishes to maximize its net revenue from the sale of these sauces.

Define $D = quarts \ of \ Diablo \ to \ be \ produced$ $R = quarts \ of \ Red \ Baron \ to \ be \ produced$ $AD = quarts \ of \ A \ used \ to \ make \ Diablo$ $AR = quarts \ of \ A \ used \ to \ make \ Red \ Baron$

BD = quarts of B used to make Diablo

 $BR = quarts \ of \ B \ used \ to \ make \ Red \ Baron$

The LINDO output for solving this problem follows:

```
3.35 D + 2.85 R - 1.6 AD - 1.6 AR - 2.05 BD - 2.05 BR
MAX
SUBJECT TO
        2) - D + AD + BD =
        3) - R + AR + BR =
                              0
        4) AD + AR <= 40
            BD + BR <=
        6) - 0.25 D + AD >=
       7) - 0.5 D + BD >=
       8) - 0.75 R + AR <=
END
          OBJECTIVE FUNCTION VALUE
            99.0000000
 1)
                    VALUE
VARIABLE
                                               REDUCED COST
```

D	50.00000	0.000000
R	20.000000	0.000000
AD	25.000000	0.000000
AR	15.000000	0.000000
BD	25.000000	0.000000
BR	5.000000	0.000000
ROW	SLACK OR SURPLUS	DUAL PRICES
2)	0.00000	-2.350000
3)	0.00000	-4.350000
4)	0.00000	0.750000
5)	0.00000	2.300001
6)	12.500000	0.000000
7)	0.00000	-1.999999
8)	0.00000	2.000000

RANGES IN WHICH THE BASIS IS UNCHANGED

	OD I GOHE	ELGIENE DANGEG	
		FICIENT RANGES	
VARIABLE	CURRENT	ALLOWABLE	ALLOWABLE
	COEF	INCREASE	DECREASE
D	3.350000	0.750000	0.500000
R	2.850000	0.500000	0.375000
AD	-1.600000	1.500001	0.666666
AR	-1.600000	0.666666	0.500000
BD	-2.050000	1.500001	1.000000
BR	-2.050000	1.00000	1.500001
	RIGHTHANI	D SIDE RANGES	
ROW	CURRENT	ALLOWABLE	ALLOWABLE
	RHS	INCREASE	DECREASE
2	0.00000	10.000000	10.000000
3	0.00000	16.666668	3.333333
4	40.00000	50.00000	10.000000
5	30.000000	10.000000	16.666664
6	0.00000	12.500000	INFINITY
7	0.00000	6.250000	5.000000
0			
8	0.00000	2.500000	12.500000

THE TABLEAU:

ROW 1 2 3 4 5 6 7 8	(BASIS ART AD R AR BR SLK 6 D BD	0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000	R 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000	AD 0.000 1.000 0.000 0.000 0.000 0.000 0.000	AR 0.000 0.000 1.000 0.000 0.000 0.000 0.000	BD 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000	0.000	1.500	SLK 5 2.300 1.500 -2.000 -1.500 -0.500 0.750 3.000 1.500	SLK 6 0.000 0.000 0.000 0.000 0.000 1.000 0.000
ROW 1	SLK 7 2.000		K 8	RHS 99.00	0					
2	3.000	2.0	000	25.00	0					
3	-4.000	-4.0	000	20.00	0					
4	-3.000	-2.0	000	15.00	0					
5	-1.000	-2.0	000	5.00	0					
6	2.000	1.0	000	12.50	0					
7	4.000	4.0	000	50.00	0					
8	1.000	2.0	000	25.00	0					

- 1. How many quarts of "Red Baron" are produced in the optimal solution? <u>20 quarts</u>
- 2. How much total profit does the firm make on these two products? \$_99.00
- 3. What *additional* amount should the firm be willing to pay to have another quart of ingredient B available? \$ _2.30____

What is the *total* amount the firm should be willing to pay for another quart of ingredient B?

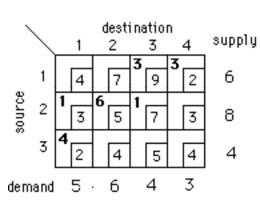
\$\(\frac{4.35}{\} \)

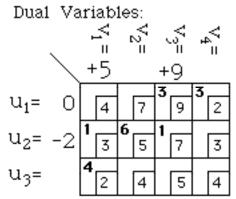
How many quarts should they be willing to buy at this price? \(\frac{10 \text{ quarts}}{\} \)

Using one more quart of ingredient B (i.e., a total of 31 quarts) would

- 5. Using one more quart of ingredient B (i.e., a total of 31 quarts) would result the following changes in the variables:
 - the "slack variable" in row #6? (X_increase/__decrease) by __0.75_
 - the quantity of A used in producing "Red Baron"? (___increase/_X_decrease) by ___1.5_
 - the quantity of A used in producing "Diablo"? (<u>X</u>increase/<u>decrease</u>) by <u>1.5</u>
 - the total quantity of "Diablo" produced? (X_increase/__decrease) by 3.0
- 6. How much can the price of "Red Baron" increase before the composition of the current optimal product mix changes? \$ ____0.50___
- 7. What is the optimal value of the objective function of the LP which is the dual of this problem? \$ _99.00 This dual LP objective is _X_minimized / ___maximized.

(C.1) **Transportation Problem.** Consider the problem with the initial solution specified on the left below:





- 1. Is this a basic solution? (circle: Yes / No)
- 2. Is this a degenerate solution? (circle: Yes / No)
- 3. If the dual variable u_1 (for supply constraint #1) were assigned the value zero, the values of the other dual variables are: $u_2 = -2$, $u_3 = _-3$, $v_1 = +5$, $v_2 = _+7$, $v_3 = +9$, $v_4 = _-+2$.
- 4. If X_{33} were to be increased, what would be the change in the cost function per unit increase in X_{33} ? _-1__
- 5. If X₃₃ were to enter the basis, what would be its new value? __1___
- 6. If X_{33} were to enter the basis, what variable(s) would leave the basis?

Circle as many as apply: X_{13} X_{14} X_{21} X_{22} X_{23} X_{31}

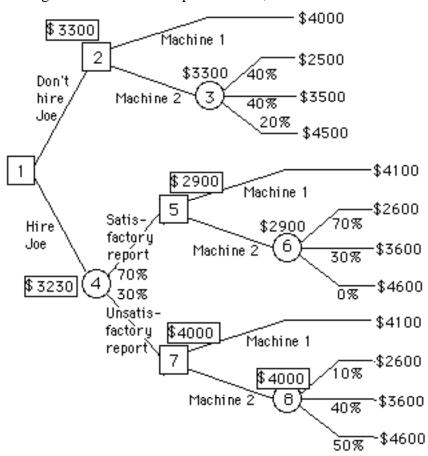
- 7. If X_{33} were to enter the basis, would the new basic solution be degenerate? (*circle*: Yes / No)
- 8. Which other variable *instead* of X_{33} would result in a degenerate basic solution if it were to enter the basis? *Circle as many as apply:* X_{11} X_{12} X_{24} X_{32} X_{33} X_{34} **none**
- 9. What is the cost of the initial solution shown above? <u>81</u>

C.2. Decision Tree. The decision sciences department is trying to determine which of two copying machines to purchase. Both machines will satisfy the department's needs for the next **ten** years.

Machine 1 costs \$3000 and has a maintenance agreement, which, for an annual fee of \$100, covers all repairs. Machine 2 costs \$2500, and its annual maintenance cost is a random variable.

At present, the decision sciences department believes there is a 40% chance that the annual cost for machine 2 will be \$0, a 40% chance it will be \$100, and a 20% chance it will be \$200.

For a fee of \$100 the department can have Joe, a trained repairman, evaluate the quality of machine 2 before the purchase decision is made. If Joe believes that machine 2 is *satisfactory*, there is a 70% chance that its annual maintenance cost will be \$0 and a 30% chance that it will be \$100. If Joe believes that machine 2 is *unsatisfactory*, there is a 10% chance that the annual maintenance cost will be \$0, a 40% chance it will be \$100, and a 50% chance it will be \$200. The department believes that there is a 70% probability that Joe will give a satisfactory report after evaluating machine 2. Based upon this data, the decision tree below is drawn:



Fill the blank boxes in the decision tree above and answer the following questions:

<u>d</u> 1. If Joe's evaluation of machine 2 is "unsatisfactory" and they were to select machine 2, what would be their expected cost (including the cost of Joe's evaluation)?

a. \$ 2600

c. \$ 3300

e. \$ 4500

b. \$ 2900

d. \$ 4000

- f. NOTA
- <u>e</u> 2. This computation is referred to as "folding back" which node in the tree above?
 - a. Node # 4

c. Node #6

e. Node #8

b. Node # 5

- d. Node #7
- f. NOTA
- <u>f</u> 3. What is EVSI (i.e., the expected value of Joe 's evaluation)?
 - a. negative \$30
- c. \$40

e. \$ 120

- b. negative \$20
- d. \$70

f. NOTA

Question #4 was disregarded... the answer depends upon the report of the repairman!

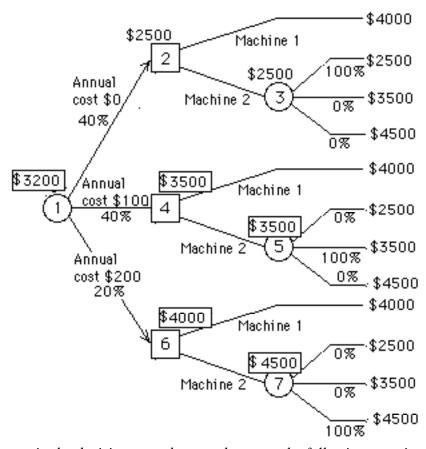
- 4. Which machine should the department buy?
 - a. Machine #1

c. a "toss-up"

b. Machine #2

d. NOTA

Suppose that the department were able to get "perfect information", i.e., a perfect prediction of the annual maintenance costs. Based upon this supposition, the department head drew the decision tree below:



Fill the blank boxes in the decision tree above and answer the following questions:

<u>c</u> 5. What is the minimum expected cost to the department if they were able to obtain this perfect prediction?

a. \$ 2600

c. \$ 3200

e. \$ 4500

b. \$ 2900

d. \$ 4000

f. NOTA

<u>b</u> 6. What is EVPI (expected value of perfect information)?

a. \$ 70

c. \$ 150

e. \$ 300

b. \$ 100

d. \$ 200

f. NOTA

C.3. Simplex Algorithm for LP: At an intermediate step of the simplex algorithm, the tableau is:

_	Z	x_1	x_2	х3	x_4	Х ₅	x ₆	x ₇	х8	RHS
	1	2	0	0	0	0	-3	1	-2	-15
(0	-4	2	1	0	0	0	1	1	4
(0	1	-1	0	1	0	-1	0	-1	2
(0	2	0	0	0	1	-3	3	2	6

1. What are the basic variables for this tableau? (circle: X_1 X_2 X_3 X_4 X_5 X_6 X_7 X_8 RHS)

2. What are the current values of the variables?

$$X_1 = \underline{0}, X_2 = \underline{0}, X_3 = \underline{4}, X_4 = \underline{2}, X_5 = \underline{6}, X_6 = \underline{0}, X_7 = \underline{0}, X_8 = \underline{0}$$

- 3. Increasing X_1 would (*circle*: <u>increase</u> / decrease) the objective function.
- 4. Increasing X_6 would (circle: increase / <u>decrease</u>) the objective function.
- 5. What is the substitution rate of X_1 for X_3 ? __-4 ___ That is, if X_1 is increased by 1 unit, X_3 (*circle*: <u>increases</u> / decreases) by a quantity _4__.
- 6. Suppose that X_6 and X_7 are slack variables in the first 2 constraints, and X_8 a surplus variable in the last constraint. (That is, the first two constraints were originally constraints, and the third was originally a constraint, all converted to equations.) What are the values of the simplex multipliers for this tableau? $\Pi_1 = \underline{+3}$, $\Pi_2 = \underline{-1}$, $\Pi_3 = \underline{-2}$
- 7. If the objective is to (*circle*: maximize / <u>minimize</u>) the objective z, the optimal solution is unbounded.
- 8. If the objective is <u>not</u> that which you specified in (7), perform a pivot to improve the objective function, and write the new tableau below. (*You need only complete the unshaded portion*.)

If the objective is the maximize, then either X_1 or X_7 could be selected to enter the basis.

If X_1 is entered into the basis:

-Z	\mathbb{X}_1	X_2	x_3	X_4	x_5	x_6	x_7	x_8	RHS
			0	-2	0				-19
			1	4	0				
			0	1	0				
			0	-2	1				

If X₇ is entered into the basis:

-z	\mathbb{X}_1	X_2	x_3	X_4	x_5	x_6	x_7	x_8	RHS
			- 1	0	0				-19
			1	0	0				
			0	1	0				
			-3	0	1				