\qquad

56:171 Operations Research Midterm Exam--15 October 2002

	Possible	Score
1. True/False	25	-
2. LP sensitivity analysis	25	-
3. Transportation problem	15	-
4. LP tableaux	$\underline{15}$	-
Total	80	-

Part I: True(+) or False(o)?

\#1-\#10 refer to the "symmetic" primal/dual pair of LPs:
$P:\left\{\begin{array}{r}\text { max } c x \\ \text { st } \quad \mathrm{Ax} \leq \mathrm{b} \\ \mathrm{x} \geq 0\end{array}\right.$

$$
D:\left\{\begin{array}{rr}
& \min \quad b y \\
s t & A^{T} y \geq c \\
y \geq 0
\end{array}\right.
$$

1. If \hat{x} is feasible in problem P above and \hat{y} is feasible in problem D , then $c \hat{x} \leq b \hat{y}$.
2. If problem P is infeasible, then problem D must be infeasible also.
3. If problem P has an unbounded feasible region, then problem D must be infeasible.
4. If the nonnegativity restriction in problem P is removed, then its dual is unchanged except that the inequality $A^{T} y \geq c$ is replaced with $A^{T} y=c$.
5. A point in the interior of problem P's feasible region must be nonbasic.
6. Replacing $x \geq 0$ with $x \leq 0$ in problem P will have the effect of replacing $y \geq 0$ with $y \leq 0$ in its dual LP.
7. If problem P has an unbounded objective function, then the dual problem D must have a degenerate optimal solution.
8. If the revised simplex method is applied to problem P , and π is the final simplex multiplier vector, then π is the optimal solution of D.
9. Increasing b_{i} in problem P above cannot improve the optimal value of the objective function $c x$.
10. The dual variable for row i of problem P gives the rate of change of the optimal value of P as b_{i} increases.
$※ ※ ※ ※ ※ ※ ※ ※ ※ ※ ※ ※$
\qquad 11. If supplies and demands of a transportation problem are all integers, then there exists an optimal solution with all shipments equal to integers.
11. If \# rows of an assignment problem is less than \# columns, then enough "dummy" rows must be appended to make the cost matrix square.
12. If a transportation problem is not balanced, it may be made so by adding either a single dummy row or a single dummy column (but not both).
13. If "Float" of an activity in a project schedule is positive, then its "Slack" must be zero.
14. When a variable X_{ij} enters the basis of a transportation problem, then the variable which leaves the basis is in either row i or column j .
15. Two activities on the critical path of a project may be in progress simultaneously.
16. Substitution rates are computed in the RSM by multiplying the basis inverse matrix times a column in the original matrix A.
17. If two or more activities of a project have no predecessor, then a dummy activity must be created in the AoA project network.
_ 19. The critical path in a project network is the longest path from a specified source node (beginning of project) to a specified destination node (end of project).
\qquad
18. A "dummy" activity in an A-O-A project network always has duration zero and cannot be a "critical" activity.
_ 21. If at some iteration of the Hungarian method, the zeroes of a $n \times n$ assignment cost matrix cannot be covered with fewer than n lines, this cost matrix must have more than one optimal solution.

- 22. The number of basic variables in a $n \times n$ assignment problem is n.

23. At each iteration of the Hungarian method, the number of zeroes in the cost matrix will increase.

Multiple choice:

24. The "backward pass" of the critical path method computes
a. the latest time (LT) for events
b. the earliest time (ET) for events
c. the "float" of the events
d. None of the above
\qquad 25. If an artificial variable is positive in the optimal solution of the Phase I LP, then the LP must be
a. infeasible
b. degenerate
c. unbounded
d. None of the above

※※

Part II. LP Sensitivity Analysis Recall the following LP problem which appeared earlier in homework assignments:
Marky Dee Sod operates three ranches in Texas. The acreage and irrigation water available for the three farms are shown below:

Farm	Acreage	Water available (acre-ft)
1	400	1500
2	600	2000
3	300	900

Three crops can be grown. However, the maximum acreage that can be grown of each crop is limited by the amount of appropriate harvesting equipment available. The three crops are described below. Any combination of crops may be grown on a farm.

Crop	Total harvesting capacity (in acres)	Water Reqmts (acre-ft per acre)	Expected profit (\$/acre)
Milo	700	6	400
Cotton	800	4	300
Wheat	300	2	100

Decision variables: $\quad \mathrm{X}_{\mathrm{ij}}=\#$ acres of crop j planted on farm i.

Name \qquad

The LINDO model is:

MAX $\begin{aligned} & 400 \mathrm{X1} \\ + & 300 \mathrm{X} \\ & +100 \mathrm{X}\end{aligned}$	X1MILO +300 X1COTTON +100 X1WHEAT +400 X2MILO			
	X2COTTON + 100	X2WHEAT + 400 X3MILO		X3COTTON
	X3WHEAT			
SUBJECT TO				
2)	$\mathrm{X1MILO}+\mathrm{X1CO}$	OTTON + X1WHEAT	<	400
3)	6 X1MILO +4	X1COTTON +2 X1WHEAT	<	1500
4)	$\mathrm{X} 2 \mathrm{MILO}+\mathrm{X} 2 \mathrm{CO}$	OTTON + X2WHEAT	$<=$	600
5)	6 X2MILO +4	X2COTTON + 2 X2WHEAT	<	2000
6)	X3MILO +X 3 CO	OTTON + X3WHEAT	<	300
7)	6 X3MILO +4	X3COTTON +2 X3WHEAT	$<=$	900
8)	X1MILO +X 2 MI	ILO + X3MILO	<	700
9)	X1COTTON + X2	COTTON + X3COTTON	<	800
10)	X1WHEAT + X2W	WHEAT + X3WHEAT	$<=$	300
END				
OPTIMAL VALUE				
1)	320000.00			
VARIABLE	VALUE	REDUCED COST		
X1MILO	0.00	0.00		
X1COTTON	375.00	0.00		
X1WHEAT	0.00	33.33		
X2MILO	50.00	0.00		
X2COTTON	425.00	0.00		
X2WHEAT	0.00	33.33		
X3MILO	150.00	0.00		
X3COTTON	0.00	0.00		
X3WHEAT	0.00	33.33		
ROW	SLACK/SURPLUS	DUAL PRICES		
2)	25.00	0.00		
3)	0.00	66.66		
4)	125.00	0.00		
5)	0.00	66.66		
6)	150.00	0.00		
7)	0.00	66.66		
8)	500.00	0.00		
9)	0.00	33.33		
10)	300.00	0.00		

RANGES IN WHICH THE BASIS IS UNCHANGED:

OBJ COEFFICIENT RANGES

VARIABLE	CURRENT	ALLOWABLE COEF	ALLOWABLE
XIMILO	INCREASE	DECREASE	
X1COTTON	300.00	0.00	INFINITY
X1WHEAT	100.00	INFINITY	0.000
X2MILO	400.00	33.33	INFINITY
X2COTTON	300.00	0.00	0.000
X2WHEAT	100.00	0.00	0.000
X3MILO	400.00	33.33	INFINITY
X3COTTON	300.00	INFINITY	0.000
X3WHEAT	100.00	0.00	INFINITY
	33.33	INFINITY	

\qquad

	RIGHTHAND SIDE RANGES		
	CURRENT	ALLOWABLE	ALLOWABLE
ROW	RHS	INCREASE	DECREASE
2	400.00	INFINITY	25.00
3	1500.00	100.00	300.00
4	600.00	INFINITY	125.00
5	2000.00	750.00	300.00
6	300.00	INFINITY	150.00
7	900.00	900.00	900.00
8	700.00	INFINITY	500.00
9	800.00	75.00	425.00
10	300.00	INFINITY	300.00

THE TABLEAU:

ROW	(BASIS)	X1MILO	X1COTTON	X1WHEAT	X2MILO	X2COTTON	X2WHEAT
1	ART	0.00	0.00	33.333	0.00	0.00	33.333
2	SLK 2	-0.500	0.00	0.500	0.00	0.00	0.000
3	X1COTTON	1.500	1.00	0.500	0.00	0.00	0.000
4	SLK 4	0.500	0.00	0.167	0.00	0.00	0.667
5	X2MILO	1.00	0.00	0.333	1.00	0.00	0.333
6	SLK 6	0.00	0.00	0.00	0.00	0.00	0.000
7	X3MILO	0.00	0.00	0.00	0.00	0.00	0.000
8	SLK 8	0.00	0.00	-0.333	0.00	0.00	-0.333
9	X2COTTON	-1.500	0.00	-0.500	0.00	1.00	0.000
10	SLK 10	0.00	0.00	1.00	0.00	0.00	1.000
ROW	X3MILO	x3COTton	N X3WHEAT	SLK 2	SLK 3	SLK 4	SLK 5
1	0.00	0.00	33.333	0.00	66.667	0.00	66.667
2	0.00	0.00	0.00	1.00	-0.250	0.00	0.000
3	0.00	0.00	0.00	0.00	0.250	0.00	0.000
4	0.00	-0.333	0.00	0.00	0.083	1.00	-0.167
5	0.00	-0.667	0.00	0.00	0.167	0.00	0.167
6	0.00	0.333	0.667	0.00	0.00	0.00	0.000
7	1.00	0.667	0.333	0.00	0.00	0.00	0.000
8	0.00	0.00	-0.333	0.00	-0.167	0.00	-0.167
9	0.00	1.00	0.00	0.00	-0.250	0.00	0.000
10	0.00	0.00	1.00	0.00	0.00	0.00	0.000
ROW	SLK 6	SLK 7	SLK 8	SLK 9	SLK 10	RHS	
1	0.00	67.00	0.00	33.00	0.00	$0.32 \mathrm{E}+$	
2	0.00	0.00	0.00	0.00	0.00	25.00	
3	0.00	0.00	0.00	0.00	0.00	375.00	
4	0.00	0.00	0.00	-0.333	0.00	125.00	
5	0.00	0.00	0.00	-0.667	0.00	50.00	
6	1.00	-0.167	0.00	0.00	0.00	150.00	
7	0.00	0.167	0.00	0.00	0.00	150.00	
8	0.00	-0.167	1.00	0.667	0.00	500.00	
9	0.00	0.00	0.00	1.00	0.00	425.00	
10	0.00	0.00	0.00	0.00	1.00	300.00	

1. How much land is left idle on Farm \#1 in the optimal solution? (choose nearest value)
a. 20 acres or less
b. 40 acres
c. 80 acres
d. 160 acres or more
\qquad

Suppose Mr. Sod decides to plant the number of idle acres (from question 1) in milo.
\qquad 2. What would be the decrease in the profit? (choose nearest value)
a. $\$ 0$
b. $\$ 500$
c. $\$ 1000$
d. $\$ 1500$
3. How would this change the optimal \# acres of cotton to be planted on Farm \#1? (choose nearest value)
a. no change
b. decrease 40 acres
c. decrease 80 acres
d. decrease 160 acres

Mr. Sod notices that his cotton acreage is limited by his harvesting capacity (800 acres). He investigates and discovers that he has the opportunity to contract with an outside firm to harvest $\mathbf{4 0}$ acres of his cotton crop, so that he can increase his cotton acreage by 40 acres.
\qquad 4. What is the largest amount per acre that he can afford to pay for this service? (choose nearest value)
a. $\$ 25$ or less
b. $\$ 50$
c. $\$ 75$
d. $\$ 100$ or more
\qquad 5. What is the effect of this increased cotton acreage on the variable SLK_9 in the solution above?
a. no change
b. decrease 40 acres
c. increase 40 acres
-
6. On which farm should the additional 40 acres be planted?
a. Farm \#1
b. Farm \#2
c. Farm \#3
\qquad 7. How does this change the acreage of milo on this farm? (choose nearest value)
a. no change
b. decrease 40 acres
c. decrease 80 acres
d. decrease 160 acres
\qquad 8. How does this change the acreage of wheat on this farm? (choose nearest value)
a. no change
b. decrease 40 acres
c. decrease 80 acres
d. decrease 160 acres
※※

Part III. Transportation Problem

	1	2	3	Supply
A	\|_5	\|_7	\|_2	5
	3	2		
B	\| 4	\|_8	\|_4	3
		2	1	
Demand	3	4	4	

1. Is the above basic solution of the transportation problem degenerate? \qquad | Yes \qquad No
2. Suppose that the dual variable $U_{A}=0$. Then the value of dual variable $V_{1}=$ \qquad
3. Based upon the values of the dual variables, the reduced cost of the nonbasic variable $X_{C 1}$ is \qquad .
4. If X_{Cl} were to enter the basis (regardless of whether it would improve the solution), then its value would become \qquad and the basic variable X \qquad would leave the basis.
\qquad

Part IV. Below are two simplex tableaus. Note that the objective in each case is to be MINimized (and, unlike the H\&L textbook, $-z$ rather than z is basic in the objective row!)

1)	-z	x_{1}	X_{2}	X_{3}	x_{4}	x_{5}	x_{6}	x_{7}	X_{8}	RHS
MIN	1	-3	0	1	3	0	0	2	2	-36
	0	3	0	4	0	0	1	3	0	9
	0	-1	1	-2	-5	0	0	-2	1	4
	0	6	0	3	-2	1	0	-4	3	5

Is solution in tableau 1 above a feasible solution? |__| Yes |__| No If so...

Is it degenerate? $|\ldots|$ Yes $\left|\quad _\right| N o$
Is it optimal? |__| Yes |__| No
If optimal....
Is it $|\ldots|$ unique, or $|\ldots|$ one of multiple optima?
If multiple optima exist... variable ___ could replace variable \qquad in the basis without increasing the cost.
If not optimal...
Does it indicate an unbounded solution? \qquad Yes \qquad | No If cost is unbounded ... entering variable \qquad $\rightarrow+\infty$ would decrease cost z to $-\infty$.
If not unbounded... entering variable ___ into the basis would remove variable \qquad from the basis. with improvement in objective?

$$
\ldots \text { Yes } \quad \perp \quad \text { No }
$$

2)	-z	X_{1}	x_{2}	x_{3}	x_{4}	x_{5}	x_{6}	x_{7}	x_{8}	RHS	
MIN	1	3	0	1	3	0	0	2	0	-36	
	0	3	0	4	1	0	1	3	0	9	-
	0	-1	1	2	5	0	0	-2	1	2	
	0	6	0	3	-2	1	0	-4	-3	0	

```
Is solution in tableau 2 above a feasible solution? |__| Yes |__ No
If so...
    Is it degenerate? |__ Yes |__| No
    Is it optimal?
```

\qquad

``` | Yes |_ 1 No
If optimal....
```

Is it $|\ldots|$ unique, or $|\ldots|$ one of multiple optima?
If multiple optima exist... variable ___ could replace variable \qquad in the basis without increasing the cost.
If not optimal...
Does it indicate an unbounded solution? \qquad Yes \qquad | No If cost is unbounded ... entering variable $\longrightarrow+\infty$ would decrease $\operatorname{cost} \mathrm{z}$ to $-\infty$. If not unbounded... entering variable ___ into the basis would remove variable \qquad from the basis. with improvement in objective? _ Yes \qquad | No

