| 56:171 Operations Research |  |
|----------------------------|--|
| Instructor: D.L. Bricker   |  |
| October 13 2000            |  |

• Write your name on the first page, and initial the other pages.

|                                 | Possible  | Score |
|---------------------------------|-----------|-------|
| 1. True/False & multiple choice | 20        |       |
| 2. Sensitivity analysis (LINDO) | 20        |       |
| 3. Geometry & duality of LP     | 20        |       |
| 4. Revised Simplex Method       | 10        |       |
| 5. Transportation problem       | <u>10</u> |       |
| total:                          | 80        |       |

#### 

| (1.) | True/False: | Indicate by "+" | or "o" whether | each statement is | s "true" or | "false", re | espectively: |
|------|-------------|-----------------|----------------|-------------------|-------------|-------------|--------------|

- a. If the optimal value of a slack variable of a primal LP constraint is zero, then the optimal value of the dual variable for that same constraint must be positive.
- b. In reference to LP, the terms "dual variable", "shadow price", and "simplex multiplier" are all synonymous.
- c. If you make a mistake in choosing the pivot column in the simplex method, the next basic solution will have one or more negative basic variables.
- d. If the primal LP feasible region is nonempty and bounded, then the dual LP can be neither unbounded nor infeasible.
- e. An assignment problem is a special case of a transportation problem
- f. A degenerate solution of an LP has fewer basic than nonbasic variables.
- g. If a basic feasible solution of a transportation problem is degenerate, the next iteration cannot result in an improvement of the objective.
- h. The two-phase simplex method solves for the dual variables in phase one, and then solves for the primal variables in phase two.
- i. In a "balanced" transportation problem, the number of sources equals the number of destinations
- j. If there is a tie in the minimum ratio test of the simplex method, the tableau that follows will be degenerate.
- k. A dual variable for an equality constraint is always zero.
- l. The slack variable and the dual variable for a constraint cannot both be positive.
  - m. In a transportation problem with 4 sources and 6 destinations, with total supply exceeding total demand, the number of basic variables will be 10.
  - n. In a minimization LP problem, if the right-hand-side of a "greater-than-or-equal" constraint is increased, the objective function will either remain the same or increase.
  - o. The "complementary slackness condition" of LP implies that in the output of the optimal solution, either the slack (or surplus) in a constraint or its dual variable (or both) must be zero.
  - p. Every basic feasible solution of an assignment problem is degenerate.

Match the four hypothetical graphs of optimal value vs right-hand-side to the appropriate combination of min/max and inequality type, by writing the correct letter (A,B,C,D) in the blanks.



| Name    |  |  |
|---------|--|--|
| INALLIC |  |  |

2. Sensitivity Analysis in LP. Consult the LINDO output to answer the questions below: A refinery takes four raw gasolines, blends them, and produces three types of fuel.

| Raw Gasoline | Octane | Available     | Price       |
|--------------|--------|---------------|-------------|
| Type         | Rating | (barrels/day) | (\$/barrel) |
| 1            | 68     | 4000          | 31.02       |
| 2            | 86     | 5050          | 33.15       |
| 3            | 91     | 7100          | 36.35       |
| 4            | 99     | 4300          | 38.75       |

| Fuel Blend | Min Octane | Selling price | Demand              |
|------------|------------|---------------|---------------------|
| Type       | Rating     | (\$/barrel)   | (barrels/day)       |
| 1          | 95         | 45.15         | ≤ 10,000            |
| 2          | 90         | 42.95         | any amt can be sold |
| 3          | 85         | 40.99         | ≥ 15,000            |

Raw gasolines not used in blending can be sold at

- \$38.95/barrel if octane rating ≥90
- ♦ \$36.85/barrel if octane rating <90

Decision variables:

XIJ = barrels/day of raw gasoline of type I ( $1 \le I \le 4$ ) used in making fuel type J ( $1 \le J \le 3$ ) YI = barrels/day of raw gasoline type I sold "as is" on the market (I=1,2,3,4)

| 11 – barreis/day of raw gasoffne type I sold as is                                                                                                                                         | on u       | ie market         | (1-1,2,3,4) |                   |                  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|-------------------|-------------|-------------------|------------------|
| a. In the optimal solution, neither raw gasolines #2, #3, or were <i>required</i> to sell 10 barrels of one of these raw gasoline                                                          |            |                   |             |                   |                  |
| b. If you sold 10 barrels of this raw gasoline on the market, gasoline #1 sold on the market? ( check:incre                                                                                |            |                   |             | n the quantity    | of raw           |
| c. If 100 additional barrels/day of fuel blend #3 must be produced the effect on the profit? (increase or decrease?)the effect on the quantity of raw gasoline #1 sold on the manufactory. | )          |                   | ( check:    | increase or       | decrease?        |
| the effect on the quantity of fuel blend #1 which is produc                                                                                                                                | ed?        | •                 | (check:_    | increase or       | decrease?)       |
| d. If the minimum octane rating for fuel blend #3 were 87 recoefficients in the constraint of row #4: -19 X13 + (                                                                          | )X         | 23 + (<br>11.93 × | )X33 +      | 12 X43 ≥ 0<br>x22 | lending          |
| SUBJECT TO<br>2) - 27 X11 - 9 X21 - 4 X31 + 4 X41                                                                                                                                          | <b>\</b> - | 0                 |             |                   |                  |
| $3) - 22 \times 12 - 4 \times 22 + \times 32 + 9 \times 42$                                                                                                                                |            | 0                 |             |                   |                  |
| 4) - 17 X13 + X23 + 6 X33 + 14 X43                                                                                                                                                         |            | 0                 |             |                   |                  |
| 5) X11 + X12 + X13 + Y1                                                                                                                                                                    | <=         | 4000              |             |                   |                  |
| 6) $X21 + X22 + X23 + Y2$                                                                                                                                                                  | <=         | 5050              |             |                   |                  |
| 7) X31 + X32 + X33 + Y3                                                                                                                                                                    | <=         | 7100              |             |                   |                  |
| 8) $X41 + X42 + X43 + Y4$                                                                                                                                                                  | <=         | 4300              |             |                   |                  |
| 9) X11 + X21 + X31 + X41                                                                                                                                                                   | <=         | 10000             |             |                   |                  |
| 10) X13 + X23 + X33 + X43                                                                                                                                                                  | >=         | 15000             |             |                   |                  |
| END OR THOUTAGE ELIMONICAL MALLE                                                                                                                                                           |            |                   |             |                   | ~ <del>(</del> ← |
| OBJECTIVE FUNCTION VALUE                                                                                                                                                                   |            |                   |             |                   | <b>—</b>         |
| 1) 140216.5                                                                                                                                                                                |            |                   |             |                   |                  |

| VARIABLE | VALUE            | REDUCED COST |
|----------|------------------|--------------|
| X11      | 633.213867       | 0.000000     |
| X21      | 0.00000          | 0.000000     |
| X31      | 0.00000          | 0.000000     |
| X41      | 4274.193359      | 0.000000     |
| X12      | 0.00000          | 0.000000     |
| X22      | 0.00000          | 0.542424     |
| X32      | 0.00000          | 0.693098     |
| X42      | 0.00000          | 0.934175     |
| X13      | 2824.193604      | 0.000000     |
| X23      | 5050.000000      | 0.000000     |
| X33      | 7100.000000      | 0.000000     |
| X43      | 25.806452        | 0.000000     |
| Y1       | 542.592590       | 0.000000     |
| Y2       | 0.00000          | 5.533333     |
| Y3       | 0.00000          | 4.970370     |
| Y4       | 0.00000          | 7.429630     |
| ROW      | SLACK OR SURPLUS | DUAL PRICES  |
| 2)       | 0.00000          | -0.307407    |
| 3)       | 0.00000          | -0.277273    |
| 4)       | 0.00000          | -0.307407    |
| 5)       | 0.00000          | 5.830000     |
| 6)       | 0.00000          | 9.233334     |
| 7)       | 0.00000          | 7.570370     |
| 8)       | 0.00000          | 7.629630     |
| 9)       | 5092.592773      | 0.000000     |
| 10)      | 0.00000          | -1.085926    |

### RANGES IN WHICH THE BASIS IS UNCHANGED:

| OBJ | COEFFICIENT | RANGES |
|-----|-------------|--------|
|     |             |        |

| VARIABLE | CURRENT   | ALLOWABLE | ALLOWABLE |
|----------|-----------|-----------|-----------|
|          | COEF      | INCREASE  | DECREASE  |
| X11      | 14.130000 | INFINITY  | 0.000000  |
| X21      | 12.000000 | 0.00000   | INFINITY  |
| X31      | 8.800000  | 0.00000   | INFINITY  |
| X41      | 6.400000  | INFINITY  | 0.000000  |
| X12      | 11.930000 | 2.283539  | 2.983334  |
| X22      | 9.800000  | 0.542424  | INFINITY  |
| X32      | 6.600000  | 0.693098  | INFINITY  |
| X42      | 4.200000  | 0.934175  | INFINITY  |
| X13      | 9.970000  | 0.00000   | 9.529630  |
| X23      | 7.840000  | INFINITY  | 0.000000  |
| X33      | 4.640000  | INFINITY  | 0.000000  |
| X43      | 2.240000  | 0.00000   | INFINITY  |
| Y1       | 5.830000  | 6.100000  | 2.932000  |
| Y2       | 3.700000  | 5.533334  | INFINITY  |
| Y3       | 2.600000  | 4.970370  | INFINITY  |
| Y4       | 0.200000  | 7.429630  | INFINITY  |
|          |           |           |           |

### RIGHTHAND SIDE RANGES

|     | _            |              |              |
|-----|--------------|--------------|--------------|
| ROW | CURRENT      | ALLOWABLE    | ALLOWABLE    |
|     | RHS          | INCREASE     | DECREASE     |
| 2   | 0.00000      | 17096.773438 | 14650.000000 |
| 3   | 0.00000      | 0.00000      | 11937.037109 |
| 4   | 0.00000      | 87550.007812 | 800.00000    |
| 5   | 4000.000000  | INFINITY     | 542.592590   |
| 6   | 5050.000000  | 44.44447     | 1627.777710  |
| 7   | 7100.000000  | 34.782608    | 3662.500000  |
| 8   | 4300.000000  | 3662.500000  | 4274.193359  |
| 9   | 10000.000000 | INFINITY     | 5092.592773  |
| 10  | 15000.000000 | 1465.000000  | 47.058823    |

| THE                                              | TABLEAU                                                                                           |                                                                                                  |                                                                                                 |                                                                                                   |                                                                                                  |                                                                                                               |                                                                                                  |
|--------------------------------------------------|---------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|
| ROW 1 2 3 4 5 6 7 8 9 10                         | (BASIS) ART X11 X12 X13 X33 X23 X41 X43 SLK 9 Y1                                                  | X11<br>0.000<br>1.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000                      | X21<br>0.000<br>0.419<br>0.000<br>-0.419<br>0.000<br>1.000<br>0.581<br>-0.581<br>0.000<br>0.000 | X31<br>0.000<br>0.258<br>0.000<br>-0.258<br>1.000<br>0.000<br>0.742<br>-0.742<br>0.000<br>0.000   | X41<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>1.000<br>0.000<br>0.000<br>0.000             | X12<br>0.000<br>0.000<br>1.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000                          | X22<br>0.542<br>0.086<br>0.182<br>-0.419<br>0.000<br>1.000<br>0.581<br>-0.581<br>-0.667<br>0.152 |
| ROW<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9 | X32<br>0.693<br>0.110<br>-0.045<br>-0.258<br>1.000<br>0.000<br>0.742<br>-0.742<br>-0.852<br>0.194 | X42<br>0.934<br>0.148<br>-0.409<br>0.000<br>0.000<br>1.000<br>0.000<br>-1.148<br>0.261           | X13<br>0.000<br>0.000<br>0.000<br>1.000<br>0.000<br>0.000<br>0.000<br>0.000                     | X23<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>1.000<br>0.000<br>0.000<br>0.000              | X33<br>0.000<br>0.000<br>0.000<br>1.000<br>0.000<br>0.000<br>0.000<br>0.000                      | X43<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>1.000<br>0.000                                   | Y1<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000                       |
| ROW 1 2 3 4 5 6 7 8 9 10                         | Y2<br>5.533<br>0.086<br>0.000<br>-0.419<br>0.000<br>1.000<br>0.581<br>-0.581<br>-0.667<br>0.333   | Y3<br>4.970<br>0.110<br>0.000<br>-0.258<br>1.000<br>0.000<br>0.742<br>-0.742<br>-0.852<br>0.148  | Y4 7.430 0.148 0.000 0.000 0.000 0.000 1.000 0.000 -1.148 -0.148                                | SLK 2<br>0.307<br>0.037<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>-0.037<br>-0.037 | SLK 3<br>0.277<br>0.000<br>0.045<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000           | SLK 4<br>0.307<br>0.005<br>0.000<br>0.032<br>0.000<br>0.000<br>0.032<br>-0.032<br>-0.037                      | SLK 5<br>5.830<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>1.000           |
| ROW<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9 | SLK 6<br>9.2<br>0.086<br>0.000<br>-0.419<br>0.000<br>1.000<br>0.581<br>-0.581<br>-0.667<br>0.333  | SLK 7<br>7.6<br>0.110<br>0.000<br>-0.258<br>1.000<br>0.000<br>0.742<br>-0.742<br>-0.852<br>0.148 | SLK 8<br>7.6<br>0.148<br>0.000<br>0.000<br>0.000<br>1.000<br>0.000<br>-1.148<br>-0.148          | SLK 9<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>1.000<br>0.000            | SLK10<br>1.1<br>0.081<br>0.000<br>-0.452<br>0.000<br>0.000<br>0.548<br>-0.548<br>-0.630<br>0.370 | 0.14E+06<br>633.214<br>0.000<br>2824.194<br>7100.000<br>5050.000<br>4274.193<br>25.806<br>5092.593<br>542.593 |                                                                                                  |

**3. Geometry & Duality of the Linear Programming.** Consider the following LP problem: Consider the *primal* LP problem:

Max 
$$z = 10X_1 + 8X_2$$
  
s.t.  $X_1 + X_2 \ge 3$   
 $2X_1 - X_2 \ge 2$   
 $2X_1 + 4X_2 \le 10$   
 $X_1 \ge 0, X_2 \ge 0$ 

| Name |  |  |
|------|--|--|
|      |  |  |

a. Write the dual of the above problem, filling the blanks with numbers and the boxes with  $\leq$ , =,  $\geq$ , or "U" (unrestricted in sign):

Min  $Y_1 + Y_2 + Y_3$ 

s.t  $Y_1 + Y_2 + Y_3$ 

 $Y_1 + Y_2 + Y_3$ 

sign restrictions:  $Y_1 \square 0, Y_2 \square 0, Y_3 \square 0$ 

Let  $x_3$ ,  $x_4$ , &  $x_5$  be the slack/surplus variables for constraints (1)-(3). Below is a graph of the feasible region:



- (b.) The primal feasible region is a polyhedron. Which edges (#1 through #5) form its boundary?
- (c.) How many basic variables must this primal LP problem have?
- (d.) Of the nine points labeled **A** through **I**, what is the number of them which correspond to basic solutions?
- (e.) Which variables are basic at the point labeled **G**?
- (f.) Suppose that during the simplex method, a move is made from the extreme point labeled (H), i.e., X=(0,3), to the extreme point labeled (F), i.e., X = (5/3, 4/3).

Which variable entered the basis? \_\_\_\_\_ Which left the basis? \_\_\_\_\_

(g.) What is the total number of basic solutions of the system? How many of these are feasible? \_\_\_\_\_ How many are infeasible? \_\_\_\_\_ (Do NOT compute them!)

Given: Point **G** is optimal,

(h.) Based upon complementary slackness principles, what can be said about the optimal values of the dual variables (where Y<sub>3</sub> & Y<sub>4</sub> are slack/surplus in dual constraints 1 & 2, respectively)?

 $Y_1$  \_\_ must be zero \_\_ must be nonzero \_\_ undetermined

 $Y_2$  must be zero must be nonzero undetermined  $Y_3$  must be zero must be nonzero undetermined  $Y_4$  must be zero must be nonzero undetermined  $Y_5$  must be zero must be nonzero undetermined undetermined

4. Revised Simplex Method. Consider the initial LP tableau for a MINIMIZATION problem:

| -Z | X1 | X2 | X3 | X4 | X5 | X6 | X7 | b  |
|----|----|----|----|----|----|----|----|----|
| 1  | 1  | 15 | 8  | 0  | 0  | 0  | 0  | 0  |
| 0  | -1 | 1  | 1  | 1  | 0  | 0  | 0  | 4  |
| 0  | 1  | -1 | 0  | 0  | 1  | 0  | 0  | 1  |
| 0  | 2  | 10 | 1  | 0  | 0  | 1  | 0  | 5  |
| 0  | 0  | -1 | 2  | 0  | 0  | 0  | 1  | 10 |

At a later iteration, besides -z, the basic variables are (in order)  $X_4$ ,  $X_3$ ,  $X_1$ ,  $X_7$  (i.e., the basis is  $B=\{4, 3, 1, 7\}$  and the basis inverse matrix is

$$\begin{bmatrix} 1 & 1 & -1 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 2 & 0 \\ 0 & 2 & 0 & 1 \end{bmatrix}^{-1} = \begin{bmatrix} 1 & 3 & -1 & 0 \\ 0 & -2 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 4 & -2 & 1 \end{bmatrix}$$

a. What are the values of the basic variables at this iteration?  $X_4=\ 2$  ,  $X_3=$  \_\_\_\_\_ ,  $X_1=$  \_\_\_\_\_ ,  $X_7=\ 4$ 

$$X_4 = 2, X_3 =$$
,  $X_1 =$ ,  $X_7 = 4$ 

a. What are the values of the simplex multipliers?

$$\pi_1 = 0$$
,  $\pi_2 = -15$ ,  $\pi_3 =$ \_\_\_\_,  $\pi_4 =$ \_\_\_\_\_

b. What is the *reduced cost* of the variable  $X_2$ ?

c. Will entering  $X_2$  into the basis result in an improvement?

d. What is the substitution rate of the nonbasic variable  $X_2$  for the basic variable  $X_3$ ?

(This means that an increase of 1 unit of  $X_2$  will result in a (check: \_\_increase or \_\_decrease?) of \_\_\_\_ units in  $X_3$ ).

5. Transportation Problem. The following is a transportation tableau, with an initial set of shipments indicated:

# DESTINATIONS



- a. Is the solution above a basic feasible solution? \_\_\_\_ If not, explain why!
- b. Complete the computation of a set of dual variables for the above transportation tableau, starting by assigning the dual variable for source #1 equal to zero:

Dual variables for supply constraints:  $U_1 = 0$ ,  $U_2 =$ \_\_\_\_,  $U_3 = -1$ ,  $U_4 = +3$  Dual variables for demand constraints:  $V_1 = 6$ ,  $V_2 = 4$ ,  $V_3 =$ \_\_\_\_,  $V_4 = 9$ 

- c. Compute the reduced costs for  $X_{13}$  &  $X_{44}$  Which of these two variables should enter the basis? Which basic variable should leave the basis?
- d. Suppose that the supply of source C were to increase from 5 to 10.

Why is the problem no longer "balanced"?

What must be done to balance the problem?