VAVAVA56:171 Operations ResearchVAVAVAVFinal Examination SolutionsFall 2000VAVAVAV

• Write your name on the first page, and initial the other pages.

• Answer both Parts A and B, and 4 (out of 5) problems from Part C.

inswer boin i		Possible
Part A:	Miscellaneous multiple choice	17
Part B:	Sensitivity analysis (LINDO)	16
Part C:	1. Discrete-time Markov chains I	15
	2. Discrete-time Markov chains II	15
	3. Continuous-time Markov chains	15
	4. Integer Programming Models	15
	5. Dynamic programming	15
	total possible:	90

VAVAVAV PART AVAVAVAV

Multiple Choice: Write the appropriate letter (a, b, c, d, etc.) : (NOTA = None of the above). a 1 If in the optimal *primal* solution of an LP problem (min cx st $Ax \ge h x \ge 0$), there is positive slack in

<u>a</u> 1. If, if the optimal <i>primat</i> solution of all LP problem	II (IIIII CX St $A \ge 0$, ≥ 0), then	e is positive stack in
a dual variable #1 must be zero	ariable for dual constraint #1	must be zero
h dual variable #1 must be positive d dual co	π	e NOTA
c = 2 If in the optimal solution of the dual of an LP r	π must be stack	$x \ge 1$ dual variable
<u><u><u></u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u>	noblem (min ex subject to: A	
a variable #2 must be zero	variable for constraint #2 mus	t be zero
b. variable #2 must be positive d. slack va	riable for constraint $#2$ must	be positive e NOTA
<u>b</u> 3. If $X_{ij} > 0$ in the transportation problem, then dual values of $X_{ij} > 0$ in the transportation problem, then dual values of $X_{ij} > 0$ in the transportation problem, then dual values of $X_{ij} > 0$ is the transport of $X_{ij} > 0$ in the transport of $X_{ij} > 0$ is the transport of $X_{ij} > 0$ in the transport of $X_{ij} > 0$ is the transport of $X_{ij} > 0$ in the transport of $X_{ij} > 0$ is the transport of $X_{ij} > 0$ in the transport of $X_{ij} > 0$ is the transport of $X_{ij} > 0$ in the transport of $X_{ij} > 0$ is the transport of $X_{ij} > 0$ in the transport of $X_{ij} > 0$ is the transport of $X_{ij} > 0$ in the transport of $X_{ij} > 0$ is the transpor	ariables U and Vmust satisfy	
a. $G_j > U_i + V_j$ c. G_i	$< U_i + V_j$	e. $G_j = U_i - V_j$
b. $C_{ij} = U_i + V_j$ d. C_{ij}	$+ U_i + V_j = 0$	f. NOTA
_c 4. For a discrete-time Markov chain, let P be the mat	trix of transition probabilities.	The sum of each
a. column is 1 c. row is 1		
b. column is 0 d. row is 0	e. NOTA	
\underline{d} 5. In a birth/death process model of a queue, the time	e between arrivals is assumed	to
a. have the Beta distribution c. be consta	nt	
b. have the Poisson distribution d. have the	exponential distribution	e. NOTA
<u>b</u> 6. In an M/M/1 queue, if the arrival rate = $\lambda > \mu$ = ser	vice rate, then	
a. $\pi_0 = 1$ in steady state c. $\pi_i > 0$ for all	e. the queue	is not a birth-death process
b. no steady state exists d. $\pi_0 = 0$ in st	eady state f. NOTA	
<u>d</u> 7. If there is a tie in the "minimum-ratio test" of the	simplex method, the solution	in the next tableau
a. will be nonbasic	c. will have a worse object	ive value
a. will be nonfeasible	d. will be degenerate	e. <i>NOTA</i>
<u>a</u> 8. An <i>absorbing</i> state of a Markov chain is one in whi	ch the probability of	
a. moving out of that state is zero c. moving	out of that state is one.	NOTA
b. moving into that state is one. d. moving	; into that state is zero	e. NOTA
The problems (9)-(12) below refer to the following LP:	(with in a qualities a quanta	to equational)
Maximize $3X_1 \pm 5X_2$	(win inequalities converted Maximize 3X1 + 5X2)	i to equations?)
while $3X_1 + 3X_2$	while to $2\mathbf{Y}_1 + \mathbf{Y}_2$	5
subject to $2X_1 - X_2 \leq 5$	subject to $2X_1 - X_2 + X_3$	= 3
$A_1 - 2A_2 \ge -4$	$A_1 = 2A_2$	$-\Lambda 5 = -4$
$x_1 + 3x_2 \le 13$	$A_1 + 3A_2$	$+ \Lambda_4 = 15$
$X_1 \ge 0, X_2 \ge 0$	Xi Z	≥ 0, j=1,2, 3,4,5

VAVAVAV PART B**VAVAVA**

Sensitivity Analysis in LP.

Consider again the LP model of PAR, Inc., which manufactures standard and deluxe golf bags:

X1 = number of **STANDARD** golf bags manufactured per quarter

X2 = number of **DELUXE** golf bags manufactured per quarter

Four operations are required, with the time per golf bag shown in the following table. *Note that the values are somewhat different from the original version of the problem.*

	STANDARD	DELUXE	Available
Cut-&-Dye Sew Finish Inspect-&-Pack	0.7 hr 0.5 hr 1 hr 0.1 hr	1 hr 0.8666 hr 0.6666 hr 0.25 hr	550 hrs. 600 hrs. 708 hrs. 135 hrs.
Profit (\$/bag)	\$10	\$15	

LINDO provides the following output:

MAX	10 T TO	X1 + 15	X2						
DODOLC	2)	0.7 X1	+ X2		<=	550			
	3)	0.5 X1	+ 0.86	566 3	(2 <=	600			
	4)	$x_1 + 0$	6666 X	2	<=	708			
	5)	0.1 X1	+ 0.25	5 x2	<=	135			
END	5,	0.1				100			
OBJECTIV	E FU	NCTION VA	LUE						
	1)	8233.	333						
VARIAE	BLE	VAL	UE		RED	UCED C	OST		
	X1	33.	333332	2		0.000	000		
	X2	526.	666687	7		0.000	000		
F	ROW	SLACK OR	SURPI	JUS	DU.	AL PRI	CES		
	2)	0.	000000)		13.3333	333		
	3)	126.	924011	-		0.000	000		
	4)	323.	590668	3		0.000	000		
	5)	0.	000000)		6.6666	567		
RANGES	IN W	HICH THE	BASIS	IS	UNCHAN	GED:			
				OBJ	COEFF	ICIENT	RANGES		
VARIABI	ιE	CUR	RENT		ALL	OWABLE		ALLOWABI	ĿΕ
_		CO.	또F.		INC	REASE		DECREASE	
2	(1	10.00	0000		0.	500000		4.00000)0
2	(2	15.00	0000		9.	9999999		0./1428	36
				RIGH	ITHAND	SIDE 1	RANGES		
RC	W	CUR	RENT		ALL	OWABLE		ALLOWABI	ĿE
		R	HS		INC	REASE		DECREASE	3
	2	550.00	0000		132.	373184		10.00000	0
	3	600.00	0000		IN	FINITY		126.92401	.1
	4	708.00	0000		IN	FINITY		323.59066	8
	5	135.00	0000		2.	500000		45.50095	57

THE	TABLEAU									
ROV	I (<u>BASIS</u>) <u>X1</u>	<u>X2</u>	SLK 2	<u>SLK 3</u>	SLK 4	SLK 5	RHS		
1	ART	0.00	0.00	13.333	0.00	0.00	6.667	8233.333	5	
2	X2	0.00	1.00	-1.333	0.00	0.00	9.333	526.667	,	
3	SLK 3	0.00	0.00	-0.511	1.00	0.00	-1.422	126.924		
4	SLK 4	0.00	0.00	-2.445	0.00	1.00	7.112	323.591		
5	Xl	1.00	0.00	3.333	0.00	0.00	-13.333	33.333	5	
Enter s	r the correctury of the correc	ct answer Iformatic	into eac on, write	h blank or ''NSI'' in	• check t the blan	he corre k:	ct alternati	ve answer, a	s appropriate.	If not
a. If	the profit of	on STAN	DARD b	ags were t	o increas	se from §	510 each to	\$12 each, th	e number of ST	ANDARD
ł	pags to be p	produced	would							
		X incr	ease 🛄	decrease	rema	in the sa	me 🛄 not	sufficient in	ıfo.	
b. If	the profit	on DELU	XE bags	were to de	ecrease fi	rom \$15	each to \$14	each, the n	umber of DELU	JXE bags to be
1	produced w	ould	•							-
-		inc	reaseX	decrease	rem	ain the s	ame not	t sufficient i	nfo.	
c. 7	The LP prob	lem abov	e has		<u>+</u>					
	X exactly	one optin	nal soluti	ion			exactl	y two optim	al solutions	
		1	1	an infinit	e numbe	er of opt	imal solution	ns		
d. If	an addition	nal 10 ho	urs were	available i	n the cu	t-&-dve	department.	PAR would	be able to obta	in an
2	additional S	\$ 133.33	in prof	its.			I ,			
e If	an addition	⊅ <u>-133.88</u> nal 10 ho	urs were	available i	n the ins	spect-&-r	oack departu	nent PAR w	yould be able to	obtain an
	additional	\$ <u>NSI</u>	in profits	s. Note: 10) exceed	s "ALLO	WABLE IN	CREASE" i	increase in proj	fit ³ 66.67.
f. If	the variable	e "SLK 5	were in	creased, th	iis would	d be equi	ivalent to			
	inc	reasing t	he hours	used in th	e inspec	t-&-pack	department	Į		
	_ <u>X_</u> de	ecreasing	the hour	s used in t	the inspe	ct-&-pac	k departmen	nt		
	noi	ne of the	above							
g. If	the variabl	e "SLK 5	5" were ir	ncreased by	7 10, X1	would	X increase	e decreas	se by <u>133.3</u> S	STANDARD
Į	golf bags/qu	uarter.				-				
h. If	the variable	e "SLK 5	" were in	creased by	10, X2	would	increase	e X decreas	se by <u>93.3</u>	DELUXE
Į	golf bags/qu	uarter.								
i. If	a pivot we	ere to be j	performed	l to enter t	he variał	ole SLK5	into the ba	sis, then acc	cording to the "	minimum ratio
t	est", the va	lue of SL	K5 in th	e resulting	basic so	olution w	ould be app	proximately	(choose nearest	value)
-	5	15		25		35	<u>></u>	<u>K</u> 45 (45.5)	55	65
-	_ 10	20		30		40	_	_50	60	70
				not s	ufficient	informa	tion			
j. If	the variable	e SLK5 w	vere to en	ter the bas	is, then	the varia	ble <u>SLK</u>	4 will 1	leave the basis.	

FYI:

Maximize	Minimize
Type of constraint i:	Sign of variable i:
\leq	nonnegative
=	unrestricted in sign
≥	nonpositive
Sign of variable j:	Type of constraint i:
nonnegative	≥
unrestricted in sign	=
nonpositive	\leq

VAVAVAV PART CVAVAVAV

1. Discrete-Ti	ne Markov	Chains I: The	Minnesota Sta	ate University	admissions	office has more	deled the path	ı of a
student through	the universit	ty as a Markov	Chain:					
	Freshman	Sophomore	Junior	Senior	Ouits	Graduates		

	Freshman	Sophomore	Junior	Senior	Quits	Graduates	
Freshman	0.10	0.80	0	0	0.10	0	
Sophomore	0	0.10	0.85	0	0.05	0	
Junior	0	0	0.12	0.80	0.08	0	
Senior	0	0	0	0.10	0.05	0.85	
Quits	0	0	0	0	1.00	0	
Graduates	0	0	0	0	0	1.00	

Each student's state is observed at the beginning of each fall semester. For example, if a student who is a junior at the beginning of the current fall semester has an 80% chance of becoming a senior at the beginning of the next fall semester, a 15% chance of remaining a junior, and a 5% chance of quitting. (We will assume that a student who quits never re-enrolls.)

	- 4				_	-
	P-/ T	2	3	4	5	6
Powers of P:	1 0.00	0010.003	20.046	50.228	0.259	90.462
$P^2 \setminus 1 2 3 4 5 6$	2 0	0.0001	0.0045	0.046	0.185	0.762
	3 0	0	0.0002	0.004	0.141	0.854
	4 0	0	0	0.0001	0.055	5 0.944
	5 0	0	0	0	1	0
	60	0	0	0	0	1
			\	5		6
	Absorp	tion	1	0.279	2 0.'	7207
P ³ \ 1 2 3 4 5 6	Probab	ilities	A: 2	0.189	1 0.5	8108
1 0.001 0.024 0.2176 0.544 0.213 0	110200	1110100		0 141	4 0 3	8585
2 0 0.001 0.03094 0.2176 0.172 0.578			1	0.111		0111
3 0 0 0.00173 0.02912 0.139 0.829			4	0.055	55 0.1	9444
4 0 0 0.001 0.055 0.943						
5000010			\ 1	2	3	4
6 0 0 0 0 1	Expected Visits	d # of 1 E= 2	1.111	0.9870 1.1111	.953 0 .073 0	.847
		3	0	0 1	.136 1	.010
		4	0	0 0) 1	.111

Select the nearest available numerical choice in answering the questions below. 1. The number of *transient* states in this Markov chain model #

\underline{e} 1. The num	nber of <i>transient</i> states in this	S Markov chain model is	
a. 0	c. 2	e. 4	g. NOTA
b. 1	d. 3	f. 5	
<u>c</u> 2. The num	ber of absorbing states in this	s Markov chain model is	;
a. 0	c. 2	e. 4	g. NOTA
b. 1	d. 3	f. 5	
\underline{c} 3. The num	ber of recurrent states in this	Markov chain model is	
a. 0	c. 2	e. 4	g. NOTA
b. 1	d. 3	f. 5	
4. The closed s	ets of states in this Markov ch	hain model are (circle all	that apply!)
a. {1	$\frac{d. \{4\}}{d. \{4\}}$	g. {1,2,3,4 }	j. {2,3,4 }
b. {2	} e. {5 }	h. {1,2,3,4 }	k. {3,4}
c. {3	} f. {6}	i. {5,6}	1. {1,2,3,4,5,6}
5. The minimal	closed sets of states in this M	Aarkov chain model are	(circle <u>all</u> that apply!)
a. {1	} d. {4 }	g. {1,2,3,4 }	j. {2,3,4 }
b. {2	$e. \{5\}$	h. {1,2,3,4 }	k. {3,4}
c. {3	} f. {6}	i. {5,6}	1. {1,2,3,4,5,6}

Suppose that at the beginning of the Fall '00 semester, Joe Cool was aFreshman.

<u> </u>	What is the proba	bility that Joe is a	a junior in Fall 2002	2? (choose neares	t answer)
	a. 10%	c. 30%	e. 50%	g. 70% (68%)	i. 90%
	b. 20%	d. 40%	f. 60%	h. 80%	j. 100% k. Not sufficient info.
<u>e</u> 7.	What is the proba	bility that Joe is a	a senior in Fall 200.	3? (choose neares	t answer)
	a. 10%	c. 30%	e. 50% (54.4%)	g. 70%	i. 90%
	b. 20%	d. 40%	f. 60%	h. 80%	j. 100% k. Not sufficient info
<u> </u>	What is the probab	bility that Joe eve	ntually graduates?	(choose nearest	answer)
	a. 10%	c. 30%	e. 50%	g. 70% (72%)	i. 90%
	b. 20%	d. 40%	f. 60%	h. 80%	j. 100% k. Not sufficient info
<u> </u>	What is the expect	ted length of his	academic career, in	years? (choose r	earest answer)
_	a. 3 year	c. 4 years	e. 4.5 years	g. 5 years	i. 5.5 years Not sufficient info
	b. 3.75 years	d. 4.25 years	f. 4.75 years	h. 5.25 years	j. \geq 5.75 years
	Note: 1.111+0.	9876+0.9539+0.8	8 479=3.8994 This i	s less than 4 year	s because the drop-outs bring down
	the average leng	th of stay!		•	
e 10.	What fraction of	students graduate	e in exactly four yea	ars? (choose near	est answer)
	a. ≤25% c.	35% e. 45% (46.254%) g. 55%	i. 65% k. 75%	m. 85% o. Not sufficient info

b. 30% d. 40% f. 50% h. 60% j. 70% l. 80% n. ≥90%

2. Discrete-time Markov Chains II:

P =

Consider an (s,S) inventory system in which the number of items on the shelf is checked at the end of each day. The demand distribution is as follows:

n=	0	1	2
$P\{D=n\}$	0.2	0.5	0.3

To avoid shortages, the current policy is to restock the shelf at the end of each day (after spare parts have been removed) so that the shelf is again filled to its limit (i.e., 4) if there are fewer than 2 parts on the shelf. (*That is, it is an* (s,S) *inventory system, with* s=2 and S=4.)

The inventory system has been modeled as a Markov chain, with the state of the system defined as the end-of-day inventory level (before restocking). Refer to the computer output which follows to answer the following questions:

$\frac{1}{0}$ $\frac{1}{0}$ $\frac{2}{0}$ $\frac{3}{0}$ $\frac{4}{5}$ $\frac{4}{0}$ $\frac{1}{2}$	$\sum_{n=1}^{5} p^{n}$
1 0 0 0.3 0.5 0.2	$\sum P =$
2 0.3 0.5 0.2 0 0	n=1
3 0 0.3 0.5 0.2 0	$\land 0 1 2 3 4$
4 0 0 0.3 0.5 0.2	1 0.388 1.015 1.616 1.485 0.495
2	2 0.643 1.340 1.463 1.160 0.392
$P^{2} =$	3 0.428 1.297 1.746 1.202 0.325
1 2 3 4	4 0.388 1.015 1.616 1.485 0.495
	First Passage Probabilities
3 0.15 0.31 0.29 0.19 0.06	n $f_{4,0}^{(n)}$
4 0.09 0.3 0.37 0.2 0.04	1 0.0
م ³ –	2 0.09
P = 1 2 3 4	3 0.111
	4 0.0828
1 0.111 0.245 0.303 0.255 0.086	5 0.07623
2 0.084 0.26 0.352 0.24 0.064	Moor River Dessens Mimor
3 0.087 0.202 0.309 0.298 0.104	Mean FIrst Passage limes
4 0.111 0.245 0.303 0.255 0.086	1234
4	
$P^{+} =$	1 10.408 4.192 2.653 2.75 11.953
$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	2 7.755 2.822 3.122 4 13.203
	3 10 3.014 2.245 3.83 13.984
2 0 1056 0 248 0 3128 0 252 0 0816	4 10.408 4.192 2.653 2.75 11.953
3 0 0927 0 2439 0 3287 0 2561 0 0786	
4 0.0909 0.228 0.3207 0.272 0.0884	
	Steady State Distribution
P ⁵ =	lil nome l mi
\setminus 0 1 2 3 4	$\frac{ 1 }{ 0 } = \frac{\pi}{10}$
0 0.0962 0.2419 0.3223 0.2580 0.0814	11 SOH 1 0.23856
1 0.0962 0.2419 0.3223 0.2580 0.0814	2 SOH 2 0.32026
2 0.0938 0.2320 0.3191 0.2680 0.0870	3 SOH 3 0.26144
3 0.0986 0.2412 0.3183 0.2588 0.0830	4 SOH 4 0.08366
4 0.0902 0.2419 0.3223 0.2500 0.0014	
\underline{c} 1. the value $r_{4,2}$ is	
a. $P\{\text{demand}=0\}$ b.	$P\{demand=1\}$ c. $P\{demand=2\}$
d. $P\{\text{demand} \leq 1\}$ e.	$P\{\text{demand} \ge 1\} \qquad \qquad f. \text{ none of the above}$
<u>b</u> 2. the value $P_{0,3}$ is	
a. P{demand=0} b.	P{demand=1} c. P{demand=2}
d. P{demand<1}	$P\{demand \ge 1\}$ f none of the above

<u> </u>	3. the value P_{2} ,	0 is			
	a. P{dema	nd=0}	b. P{demand=1	}	c. P{demand=2}
	d. P{dema	nd≤1}	e. $P\{\text{demand} \ge 1\}$	}	f. none of the above
<u>d</u>	4. If the shelf i	s full Monday mor	ming, the expected	number of days u	intil astockout occurs is (select
	nearest value):				
	a. 2.5	b. 5	c. 7.5	d. 10	e. 12.5
	f. 15	g. 17.5	h. 20	i. more than 20	
<u>e</u>	5. If the shelf i	s full Monday mor	ming, the probabili	ty that the shelf is	full Thursday night (i.e., after 4
	days of sales) is	(select nearest val	lue):		
	a. 5%	b. 6%	c. 7%	d. 8%	e. 9% (8.8%)
	f. 10%	g. 11%	h. 12%	i. 13%	j. ≥14%
<u>_f</u>	6. If the shelf i	s full Monday mor	ning, the probabili	ty that the shelf is	s restocked Thursday night is
	(select nearest v	value):			
	a. 5%	b. 10%	c. 15%	d. 20%	e. 25%
	f. 30% (31.89	%) g. 35%	h. 40%	i. 45%	j. ≥50%
<u>f</u>	7. If the shelf i	s full Monday mor	ning, the expected	number of nights	that the shelf is restocked during
	the next five nig	hts is (select near	est value):		
	a. 0.25	b. 0.5	c. 0.75	d. 1	e. 1.25
	f. 1.5 (1.403)	g. 1.75	h. 2	i. 2.25	j. ≥2.5
<u>_f</u>	8. How frequer	ntly will the shelf b	be restocked? (sele	ct nearest value):	once every <u>2.988</u> days
	a. 0.5 days	b. 1 days	c. 1.5 days	d. 2 days	e. 2.5 days
	f. 3 days	g. 3.5 days	h. 4 days	i. 4.5 days	j. ≥5 days
<u>e</u>	9. What is the	probability of asto	ckout Thursday ni	ght? (select neares	st value):
	a. 5%	b. 6%	c. 7%	d. 8%	e. 9%
	f. 10%	g. 11%	h. 12%	i. 13%	j. ≥14%

10. Circle <u>one or more</u> of the following equations which are among those solved to compute the steady state probability distribution:

a. $\boldsymbol{p}_0 = 0.3 \boldsymbol{p}_2$	b. $\boldsymbol{p}_4 = 0.2\boldsymbol{p}_2 + 0.5\boldsymbol{p}_3 + 0.3\boldsymbol{p}_4$
c. $\boldsymbol{p}_3 = 0.3\boldsymbol{p}_0 + 0.5\boldsymbol{p}_1 + 0.2\boldsymbol{p}_2$	d. $\boldsymbol{p}_2 = 0.3\boldsymbol{p}_0 + 0.3\boldsymbol{p}_1 + 0.2\boldsymbol{p}_2 + 0.5\boldsymbol{p}_3 + 0.3\boldsymbol{p}_4$
e. $\boldsymbol{p}_4 = 0.3 \boldsymbol{p}_2 + 0.5 \boldsymbol{p}_3 + 0.2 \boldsymbol{p}_4$	f. $\boldsymbol{p}_0 + \boldsymbol{p}_1 + \boldsymbol{p}_2 + \boldsymbol{p}_3 + \boldsymbol{p}_4 = 1$

3. Birth/Death Model of a Queue:

A machine operator has sole responsibility for keeping three semi-automatic machines busy. The time required to ready a machine (unloading & reloading) has exponential distribution with mean 15 minutes. The machine will then run unattended for an average of 1 hour (but with actual time having exponential distribution) before it requires the operator's attention again.

λο.	λ ₁ .	λ2.
(0) (1)	$\overline{)}$	2) (3)
$\sim = \frac{1}{\mu_1}$	~ <u>μ</u> 2	μ ₃

<u>b,d,f_</u>	b,d,f_ 1. The Markov chain model diagrammed above is (<i>select one <u>or more</u></i>):					
	a.	a discrete-time Marko	ov cl	hain b. a continuous-	time Markov chain	c. a Poisson process
	d.	a Birth-Death process		e. an M/M/1 que	eue	f. an M/M/1/3/3 queue
	g.	an M/M/3 queue		h. an M/M/1/3 q	ueue	
<u>a</u>	2.	The value of λ_2 is				
	a.	1/hr.	b.	2/hr.	c. 3/hr	d. 4/hr
	e.	0.25/hr.	f.	0.5/hr.	g. none of the above	
<u>d</u>	3.	The value of μ_2 is				
	a.	1/hr.	b.	2/hr.	c. 3/hr	d. 4/hr
	e.	0.25/hr.	f.	0.5/hr.	g. none of the above	

<u>_c</u> _	4. The value of λ_0) is		
	a. 1/hr.	b. 2/hr.	c. 3/hr	d. 4/hr
	e. 0.25/hr.	f. 0.5/hr.	g. none of the a	bove
<u>_b</u> _	5. The steady-stat	te probability π_0 is comp	puted by solving	
	a. $\frac{1}{\pi_0} =$	$1 + \frac{3}{4} + \left(\frac{3}{4}\right)^2 + \left(\frac{3}{4}\right)^3 \approx \frac{1}{6}$	$\frac{1}{0.366}$ b. $\frac{1}{\pi_0} = 1 +$	$+\frac{3}{4}+\frac{1}{2}\times\frac{3}{4}+\frac{1}{4}\times\frac{1}{2}\times\frac{3}{4}\approx\frac{1}{0.451}$
	$c \frac{1}{1} =$	$1 + \frac{3}{2} + \frac{1}{2} + \frac{1}{2} \approx \frac{1}{2}$	d <u>1</u> – 1 .	$1 + 1^{2} + 1^{3} - 1$
	$\sim \pi_0$	$4 \ 2 \ 4 \ 0.4$	u. $\pi_0 = 1$	4 4 4 0.753
	e. $\frac{1}{\pi_0} =$	$1 + \frac{3}{4} + \left(\frac{1}{2}\right) + \left(\frac{1}{4}\right)^{2} \approx \frac{1}{4}$	$\frac{1}{0.496}$ f. none of t	he above
<u>_d</u> _	6. The operator w	ill be busy what fraction	n of the time? (choosenear	restvalue) 1- p₀=1- 0.451
	a. 40%	b. 45%	c. 50%	d. 55%
	e. 60%	f. 65%	g. 70%	h. ≥75%
<u> </u>	7. What fraction of	of the time will the oper	rator be busy but with no m	achine waiting to be serviced?
	(choose nearest va	<i>lue</i>) $\pi_1 = 0.75 \pi_0 = 0.75(0$	0.451)	1 400/
	a. 10%	b. 20%	c. 30%	d. 40%
	e. 50%	f. 60%	g. 70%	h. ≥80%
<u>_a</u> _	8. Approximately	2.2 machines per nour	require the operator's attenti	on. What is the average length of
		le <u>waits</u> before the opera	tion begins to ready the mad	sinne for the next job? (select
	nearesivalue)	r (ie 6 min)	h 0.15 hr (ie 9 r	nin)
	a. 0.1 h	r (i.e. 12 min.)	d = 0.25 hr (i.e., $y = 15$	min.)
	e. 0.2 h	r. (i.e., 12 min.)	f. greater than 0.33	hr. (i.e., >20 min.)
	Solution: $\mathbf{n} = 0$	451 n = 0.338 n	$= 0.169 \mathbf{n} = 0.0423$	
	Solution: \mathbf{P}_0	$\overline{\mathbf{r}}_{1}$ $\overline{\mathbf{r}}_{2}$	0.109, p ₃ 0.0125	
	Average arrival ra	te = $I = 3p_0 + 2p_1 +$	$1\mathbf{p}_2 + 0\mathbf{p}_3 = 3(0.451) + 2$	2(0.338)+0.169=2.2/hr
	Average # of mac	hines waiting $= L_q = 0$	$\boldsymbol{p}_0 + 0\boldsymbol{p}_1 + 1\boldsymbol{p}_2 + 2\boldsymbol{p}_3 = 1$	(0.169) + 2(0.423) = 0.25
		$\overline{\mathbf{T}}_{\mathbf{W}}$, \mathbf{W} 0).25 0 1141 6 8	- :
	By Little's Law, I	$\mathcal{L}_q = \mathbf{I} W_q \Longrightarrow W_q = \frac{1}{2}$	$\frac{1}{2/hr} = 0.114hr = 0.811$	1111
d	9. What will be the	e utilization of this grov	up of 3 machines?(choose)	nearest value)
	a. 60%	b. 65%	c. 70%	d. 75%
	e. 80%	f. 85%	g. 90%	h. ≥95%
	Solution: Average	# machines operating =	$3p_0 + 2p_1 + 1p_2 + 0p_3 =$	=2.2
		2.2		
	and so the utilizatio	n is $\frac{1}{2} = 73.3\%$		
4 T	(D ·			
4. In	teger Programmi	ag iviodel Formula	tion Part I. You have be	een assigned to arrange the songs on $(\#1 \text{ and } \#2)$. The length and
tn	the cassette version of N	adonna's latest album.	A cassette tape has two sic	les (#1 and #2). The length and
ty	pe of each song are gi	Song	Type	Length (minutes)
		1	Ballad	<u> </u>
		2	Hit	5
		_		-

1	Dallau	+
2	Hit	5
3	Ballad	3
4	Ballad & Hit	2
5	Ballad	4
6	Hit	3
7	neither ballad nor hit	5
8	Ballad & hit	4

Define the variables

 $\begin{array}{rll} Y_i = & 1 \mbox{ if song $\#$i is on side 1;} \\ & 0 \mbox{ otherwise (i.e., if on side 2)} \\ Thus, & 1-Y_i & = 1 \mbox{ if song $\#$i is on side 2;} \\ & 0 \mbox{ otherwise (i.e., if on side 1)} \end{array}$

For each restriction, choose alinear constraint from the list (a) through (i) below.

- <u>g</u> 1. Side #2 must have at least 3 ballads \Rightarrow side 1 can have no more than 2 of the 5 ballads
- <u>c</u> 2. Side #1 must have at least 2 hit songs
- <u>d</u> 3. If song #2 is on side 1, then song #3 must be on side 2
- <u>c</u> 4. The number of hit songs on side 2 should be no more than $2 \Rightarrow$ side 1 can have at least 2 of the 4 hits
- \underline{f} 5. If both songs 1 & 2 are on side 1, then song 3 must be on side 2.

a.
$$Y_2+Y_4+Y_6+Y_8 \ge 3$$

b. $Y_2+Y_4+Y_6+Y_8 \le 2$
c. $Y_2+Y_4+Y_6+Y_8 \ge 2$
d. $Y_2+Y_3 \le 1$
i. $Y_1+Y_2-Y_3 \ge 2$
j. $Y_1+Y_2+Y_3 \le 1$
k. $Y_1+Y_2+Y_3 \le 3$
l. None of the above

Part II. Comquat owns four production plants at which personal computers are produced. In order to use a plant to produce computers, a fixed cost must be paid to set up the production line in that plant.

Define the variables:

 $Y_i = 1$ if the production line has been set up at plant #i

0 otherwise

 $X_i = #$ of computers produced at plant #i

For each restriction, choose a constraint from the list (a) through (l) below.

b 7. Computers are to be produced at no more than 3 plants.

- <u>i</u> 8. If the production line at plant 2 is set up, then that plant can produce up to 8000 computers; otherwise, none can be produced at that plant.
- <u>d</u> 9. The production lines at plants 2 and 3 cannot <u>both</u> be set up.
- _g_ 10. The total production must be <u>at least 20,000</u> computers.
- <u>f</u> 11. If the production line at plant 2 is set up, that plant must produce <u>at least</u> 2000 computers.

<u>k</u> 12. If the production line at plant 2 is not set up, then the production line at plant 3 cannot be set up. **Constraints:**

a. $Y_2 \le 8000 X_2$	b. $Y_1 + Y_2 + Y_3 + Y_4 \le 3$	c. $Y_1 + Y_2 + Y_3 + Y_4 \ge 3$	d. $Y_2 + Y_3 \le 1$
e. $Y_2 \le 2000 X_2$	f. $X_2 \ge 2000 Y_2$	g. $X_1 + X_2 + X_3 + X_4 \ge 20000$	h. $Y_2 + Y_3 \ge 1$
i. $X_2 \le 8000 Y_2$	j. $Y_2 \leq Y_3$	k. $Y_2 \ge Y_3$	1. None of the above

5. Deterministic Produ	iction Planning	Production mu	st be planned	for each day	of the next	week
(Sunday through Saturday).	The following ship	ments have bee	n planned for	each day:		

Day	Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
Required	1	3	1	4	2	2	1

Other data:

Production cost is \$3 for setup, plus \$1 per unit produced, up to a maximum of 3 units.

Storage cost: \$1 per unit stored (based upon **beginning**-of-day stock), up to a maximum of 5 units in storage **Salvage value**: \$2 per unit in stock remaining in storage Saturday night

Initial inventory: 2 units are in stock Sunday morning.

A dynamic programming model was used to compute the optimal production quantities for each day in order to meet the shipment schedule.

The stages were numbered in abackward fashion, i.e., n= 7(Sunday), 6(Monday), ... 1(Saturday).

Several values have been blanked in the tables of computations-- compute them:

 $A = \underline{4}$ = cost of last day (Saturday) if stock is zero and 1 is produced.

B = 11 = cost of Thursday through Saturday if on Thursday morning, 2 are in stock and 2 are produced.

C = 16 = minimal cost of Wednesday through Saturday if 4 are in stock

 $D = \underline{0}$ = optimal production quantity on Wednesday if 4 are in stock

 $E = __0$ = resulting stock on Thursday if 4 are in stock Wednesday & optimal quantity is produced

What is the minimum total cost of the schedule? <u>32</u>

Complete the table below with the inventory levels and production quantities if the optimal schedule is used.

Day	SUN	MON	TUES	WED	THURS	FRI	SAT	final value
Inventory	2	1	0	1	0	0	0	2
Prod'n qty	0	2	2	3	2	2	3	

Sta	age 1 (S	Saturda	y)	
s \	x:0	1	2	3
0	9999	_A_	3	2
1	1	3	2	1
2	0	2	1	0
3	-1	1	0	-1
4	-2	0	-1	9999
5	-3	-1	9999	9999
Sta	ige 2 (I	riday)		_
s \	x:0	1	2 7	3
1	9999	9999	/	/ 7
2 1	9999	7	/ 7	7
2	4	7 7	/ 7	7 7
4	4	, 7	, 7	7
5	4	, 7	, 7	9999
0	-			
Sta	age 3 (1	Thursda 1	y)	з
0	9999		 12	 12
1	9999	12	13	11
2	9	13	B	12
2	10	11	12	13
4	8	12	13	14
5	9	13	14	9999
- 1				
Sta	age 4 (V	Vednesd	ay)	
s \	x:0	1	2	3
1	9999	9999	9999	19
2	9999	9999	19	19 10
د ۱	9999	10	19	20
5	16	18	20	20 19
0	10	10	20	
Sta	age 5 (1	ſuesday)	_
s \	x:0	1	2	3
0	9999	9999	24	25
1 2	9999	24	25	25
2	21	25 25	∠5 24	24
3	22	∠5 24	24 25	25 0000
	22	25	9999	9999
5	21	23	2222	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
Sta	age 6 (N	(Ionday)		
s \	x:0	1	2	3
0	9999	9999	9999	30
1	9999	9999	30	31
2	9999	30	31	29
5	∠/ วo	1 20	29 21	3⊥ 20
	20 26	29 21	5⊥ 20	32 20
5	20	75	24	26
Sta	ige 7			
s \	x:0	1	2	3
2	32	35	34	36
<><><>	><><><	><><><	><><><	><><><>

Stage 7 (Sunday)				
C	Optimal	Optima	al Resulting	J
State	Values	Decisi	ons State	
2	32	0	1	
<><><><	<><><><	><><><>	<><><><>	
Stage 6 (Monday):				
Optimal	l Opti	mal Res	ulting	
State	Values	Decisi	ons State	
0	30	3	0	
1	30	2	0	
2	29	3	2	
3	27	0	0	
4	28	0	1	
5	26	0	2	
<><><><	<><><><	><><><>	<><><>	
Stage 5	5 (Tues	day):		
Optimal	l Opti	mal Res	ulting	
State	Values	Decisi	ons State	
0	24	2	1	
1	24	1	1	
2	21	0	1	
3	22	0	2	
4	22	0	3	
5	21	0	4	
<><><><	<><><><	><><><>	<><><>	
Stage 4	4 (Wedn	esday):		
Optima	l Opti	mal Res	ulting	
State	Values	Decisi	ons State	
1	19	3	0	
2	19	2	0	
3	18	3	2	
4	С	D	E	
5	16	0	1	
<><><><	<><><><	- ><><><>	<><><><>	
Stage 3 (Thursday):				
Optima]	l Opti	mal Res	ulting	
State	Values	Decisi	ons State	
0	12	2	0	
1	11	3	2	
2	9	0	0	
3	10	Õ	1	
4	8	0	2	
5	9	0	3	
~~~~~~			<><><><><><><><><><><><><><><><><><><><>	
Stage	(Frid	av):		
Optima ¹	l Onti	mal Paq	ulting	
State	Valued	Dogigi	and State	
<u>State</u>	varues 7	2 Decisi	0115 State	
1	7	ے 1	0	
I Q	/	Ţ	0	
2	4	0	0	
3	4	0	1	
4	4	0	2	
5	4	U	3	
<pre></pre>				
Ontimal Ontimal Desulting				
optima.	L Optin	ma⊥ Kes	uiting	
State	vaiues	Decisi	ons State	
0	2	3	2	
1	1	0	0	
2	0	U	1	
3	-1	U	2	
4	-2	U	3	

Name or Initials

5 -3 0 4