\qquad

VAVAVAV	$56: 171$ Operations Research	$\boldsymbol{\nabla A V A V A V}$
AVAVAVA	Final Examination Solutions	AVAVAV
VAVAVAV	Fall 2000	VAVAVAV

- Write your name on the first page, and initial the other pages.
- Answer both Parts A and B, and 4 (out of 5) problems from Part C.

Part A:
Miscellaneous multiple choice Possible

Part B:
Part C:
Sensitivity analysis (LINDO)

1. Discrete-time Markov chains I 15
2. Discrete-time Markov chains II 15
3. Continuous-time Markov chains 15
4. Integer Programming Models 15
5. Dynamic programming $\frac{15}{90}$
total possible:

90

VAVAVAVPART AVAVAVAV

Multiple Choice: Write the appropriate letter (a, b, c, d, etc.) : (NOTA =None of the above).
_a_1. If, in the optimal primal solution of an LP problem (mincx st $A x \geq b, x \geq 0$), there is positive slack in constraint \#1, then in the optimal dual solution,
a. dual variable \#1 must be zero
c. slack variable for dual constraint \#1 must be zero
b. dual variable \#1 must be positive
d. dual constraint \#1 must be slack e. NOTA
\qquad 2. If, in the optimal solution of the dual of an LP problem (min cx subject to: Ax>b, $x \geq 0$), dual variable \#2 is positive, then in the optimal primal solution,
a. variable \#2 must be zero
c. slack variable for constraint \#2 must be zero
b. variable \#2 must be positive
d. slack variable for constraint \#2 must be positive e. NOTA
\underline{b} 3. If $\mathrm{X}_{\mathrm{ij}}>0$ in the transportation problem, then dual variables U and Vmust satisfy
a. $\mathrm{G}_{\mathrm{j}}>\mathrm{U}_{\mathrm{i}}+\mathrm{V}_{\mathrm{j}}$
c. $\mathrm{G}_{\mathrm{j}}<\mathrm{U}_{\mathrm{i}}+\mathrm{V}_{\mathrm{j}}$
e. $\mathrm{G}_{\mathrm{j}}=\mathrm{U}_{\mathrm{i}}-\mathrm{V}_{\mathrm{j}}$
b. $\mathrm{G}_{\mathrm{j}}=\mathrm{U}_{\mathrm{i}}+\mathrm{V}_{\mathrm{j}}$
d. $C_{i j}+U_{i}+V_{j}=0$
f. NOTA
4. For a discrete-time Markov chain, let P be the matrix of transition probabilities. The sum of each...
a. column is 1
c. row is 1
b. column is 0
d. row is 0
e. NOTA
d
5. In a birth/death process model of a queue, the time between arrivals is assumed to
a. have the Beta distribution c. be constant
b. have the Poisson distribution d. have the exponential distribution e. NOTA
_-
6. In an $M / M / 1$ queue, if the arrival rate $=\lambda>\mu=$ service rate, then
a. $\pi_{\mathrm{O}}=1$ in steady state
c. $\pi_{\mathrm{i}}>0$ for all i
e. the queue is not a birth-death process
b. no steady state exists
d. $\pi_{\mathrm{o}}=0$ in steady state
f. NOTA
\qquad 7. If there is a tie in the "minimum-ratio test" of the simplex method, the solution in the next tableau
a. will be nonbasic
c. will have a worse objective value
a. will be nonfeasible
d. will be degenerate
e. $N O T A$
$\underline{ }$ 8. An absorbing state of a Markov chain is one in which the probability of
a. moving out of that state is zero
c. moving out of that state is one
b. moving into that state is one.
d. moving into that state is zero
e. $N O T A$

The problems (9)-(12) below refer to the following LP:

$$
\begin{array}{cc}
\text { Maximize } & 3 X_{1}+5 X_{2} \\
\text { subject to } & 2 X_{1}-X_{2} \leq 5 \\
& X_{1}-2 X_{2} \geq-4 \\
& X_{1}+3 X_{2} \leq 15 \\
& X_{1} \geq 0, X_{2} \geq 0
\end{array}
$$

(with inequalities converted to equations:)

\qquad

9 .The feasible region includes (possibly with others) points:
a. E, F, \& G
c. D, C, \& E
e. D, E, \& G
b. G\&F
d. $B \& F$
f. NOTA
10. At point \mathbf{F}, the basic variables include the variables
a. $X_{1}, X_{2} \& X_{3}$
c. $\mathrm{X}_{2}, \mathrm{X}_{4} \& \mathrm{X}_{5}$
e. $X_{1}, X_{2} \& X_{5}$
b. $\mathrm{X}_{1}, \mathrm{X}_{3} \& \mathrm{X}_{4}$
d. $X_{1}, X_{2} \& X_{4}$
f. NOTA
11. Which point is degenerate in the primal problem?
a. point A
c. point C
e. point E
b. point B
d. point D
f. NOTA
12. The dual of this LP has the following constraints (not including nonnegativity or nonpositivity):
a. 2 constraints of type (\geq)
c. one each of type $\leq \& \geq$
e. one each of type $\geq \&=$
b. 2 constraints of type (\leq)
d. 2 of type \leq and 1 of type \geq
f. None of the above
13. The dual of the LP has the following types of variables:
a. two non-negative variables and one non-positive variable
d. three non-positive variables
b. one non-negative and two non-positive variables
e. three nonnegative variables
c. two non-negative variables and one unrestricted in sign
f. None of the above
14. If point F is optimal, then which dual variables must be zero, according to the Complementary Slackness Theorem?
a. Y_{1} and Y_{2}
c. Y_{2} and Y_{3}
e. Y_{2} only
b. Y_{1} and Y_{3}
d. Y_{1} only
f. Y3 only
15. The number of basic variables in a solution of a transportation problem with 5 sources and 7 destinations is 11_{1}
16. A balanced transportation problem is one in which
a. \# sources = \# destinations
c. supplies \& demands all 1
e. $N O T A$
b. cost coefficients are all 1
d. sum of supplies $=$ sum of demand
\qquad 17. An assignment problem is a transportation problem for which
a. \# sources = \# destinations
c. supplies \& demands all 1
e. NOTA
b. cost coefficients are all 1
d. sum of supplies $=$ sum of demand
\qquad

VAVAVAVPART BVAVAVAF
Sensitivity Analysis in LP.
Consider again the LP model of PAR, Inc., which manufactures standard and deluxe golf bags:
X1 = number of STANDARD golf bags manufactured per quarter
X2 = number of DELUXE golf bags manufactured per quarter
Four operations are required, with the time per golf bag shown in the following table. Note that the values are somewhat different from the original version of the problem.

	STANDARD	DELUXE	Available
Cut-\&-Dye	0.7 hr	1 hr	550 hrs.
Sew	0.5 hr	0.8666 hr	$600 \mathrm{hrs}$.
Finish	1 hr	0.6666 hr	$708 \mathrm{hrs}$.
Inspect-\&-Pack	0.1 hr	0.25 hr	135 hrs.
Profit (\$/bag)	\$10	\$15	

LINDO provides the following output:

\qquad

ROW	(BASIS)		X1	X2	SLK 2	$\underline{\text { SLK } 3}$	SLK 4	SLK 5	RHS
1	ART		0.00	0.00	13.333	0.00	0.00	6.667	8233.333
2	X2		0.00	1.00	-1.333	0.00	0.00	9.333	526.667
3	SLK	3	0.00	0.00	-0.511	1.00	0.00	-1.422	126.924
4	SLK	4	0.00	0.00	-2.445	0.00	1.00	7.112	323.591
5	X1		1.00	0.00	3.333	0.00	0.00	-13.333	33.333

Enter the correct answer into each blank or check the correct alternative answer, as appropriate. If not sufficient information, write "NSI' in the blank:
a. If the profit on STANDARD bags were to increase from $\$ 10$ each to $\$ 12$ each, the number of STANDARD bags to be produced would
$\underline{\underline{X}]}$ increase |__| decrease |__| remain the same |__ not sufficient info.
b. If the profit on DELUXE bags were to decrease from $\$ 15$ each to $\$ 14$ each, the number of DELUXE bags to be produced would
$|\ldots|$ increase $\underline{\underline{X}]}$ decrease $\perp \ldots$ remain the same $|\ldots|$ not sufficient info.
c. The LP problem above has $|\underline{X}|$ exactly one optimal solution
___ exactly two optimal solutions
|__| an infinite number of optimal solutions
d. If an additional 10 hours were available in the cut-\&-dye department, PAR would be able to obtain an additional \$_133.33_ in profits.
e. If an additional 10 hours were available in the inspect-\&-pack department, PAR would be able to obtain an additional \$_NSI__ in profits. Note: 10 exceeds "ALLOWABLE INCREASE"-- increase in profit ≥ 66.67.
f. If the variable "SLK 5" were increased, this would be equivalent to increasing the hours used in the inspect-\&-pack department
\qquad decreasing the hours used in the inspect-\&-pack department
\qquad none of the above
g. If the variable "SLK 5 " were increased by 10 , X1 would \boxed{X} increase \square decrease by $\quad 133.3$ STANDARD golf bags/quarter.
h. If the variable "SLK 5" were increased by 10 , X2 would $\quad \square _$increase $\lfloor X$ decrease by \quad 93.3__ DELUXE golf bags/quarter.
i. If a pivot were to be performed to enter the variable SLK5 into the basis, then according to the "minimum ratio test", the value of SLK5 in the resulting basic solution would be approximately (choose nearest value)

_- 5	__ 15	25	_ 35	$\underline{\mathrm{X}} 45$ (45.5)	__ 55	_65
_ 10	__20	_30	__40	__50	__60	70

j. If the variable SLK5 were to enter the basis, then the variable \qquad will leave the basis.

FYI:

Maximize	Minimize
Type of constraint i:	Sign of variable i:
\leq	nonnegative
$=$	unrestricted in sign
\geq	nonpositive
Sign of variable $\mathrm{j}:$	Type of constraint $\mathrm{i}:$
nonnegative	\geq
unrestricted in sign	$=$
nonpositive	\leq

\qquad

VAVAVAVPART CVAVAVAF

1. Discrete-Time Markov Chains I: The Minnesota State University admissions office has modeled the path of a student through the university as a Markov Chain:

	Freshman	Sophomore	Junior	Senior	Quits	Graduates
Freshman	0.10	0.80	0	0	0.10	0
Sophomore	0	0.10	0.85	0	0.05	0
Junior	0	0	0.12	0.80	0.08	0
Senior	0	0	0	0.10	0.05	0.85
Quits	0	0	0	0	1.00	0
Graduates	0	0	0	0	0	1.00

Each student's state is observed at the beginning of each fall semester. For example, if a student who is a junior at the beginning of the current fall semester has an 80% chance of becoming a senior at the beginning of the next fall semester, a 15% chance of remaining a junior, and a 5% chance of quitting. (We will assume that a student who quits never re-enrolls.)

Powers of P:							
$\mathrm{P}^{2} \backslash$	1	2	3	4	5	6	
1	0.010 .160 .68			0	0.15	0	
2	0	0.010 .187		0.68	0.123	0	
3	0	$0 \quad 0.0144$		0.176	0.1296	960.6	
4	0	0	0	0.01	0.055	0.935	
5	0	0	0	0	1	0	
6	0	0	0	0	0	1	
$\mathrm{P}^{3} \backslash$	1	2	3	4		5	6
1	0.00	10.0	0240.2	1760.	544	0.213	0
2	0	0.001	010.03	0940.2	2176	0.172	0.578
3	0	0	0.001	730.0	2912	0.139	0.829
4	0	0	0	0.0	01	0.055	0.943
5	0	0	0	0		1	0
6	0	0	0	0		0	1

$\mathrm{P}^{4} \backslash$	1	2	3	4	5	6
1	0.0001	0.0032	0.0465	0.228	0.259	0.462
2	0	0.0001	0.0045	0.046	0.185	0.762
3	0	0	0.0002	0.004	0.141	0.854
4	0	0	0	0.0001	0.055	0.944
5	0	0	0	0	1	0
6	0	0	0	0	0	1

	1	5	6
Absorption	1	0.2792	0.7207
Probabilities A:	2	0.1891	0.8108
	3	0.1414	0.8585
	4	0.05555	0.9444

| | 1 | 2 | | 3 | 4 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Expected \# of | 1 | 1.111 | 0.987 | 0.953 | 0.847 |
| Visits $E=$ | $2 \mid$ | 0 | 1.111 | 1.073 | 0.953 |
| | 3 | 0 | 0 | 1.136 | 1.010 |
| | 4 | 0 | 0 | 0 | 1.111 |

Select the nearest available numerical choice in answering the questions below.
e 1. The number of transient states in this Markov chain model is
a. 0
c. 2
e. 4
g. NOTA
b. 1
d. 3
f. 5
c 2. The number of absorbing states in this Markov chain model is
a. 0
c. 2
e. 4
g. NOTA
b. 1
d. 3
f. 5
c 3. The number of recurrent states in this Markov chain model is
a. 0
c. 2
e. 4
g. NOTA
b. 1
d. 3
f. 5
4. The closed sets of states in this Markov chain model are (circle all that apply!)
a. $\{1\}$
b. $\{2\}$
c. $\{3\}$
d. $\{4\}$
e. $\{5\}$
f. $\{6\}$
g. $\{1,2,3,4\}$
h. $\{1,2,3,4\}$
i. $\{5,6\}$
j. $\{2,3,4\}$
k. $\{3,4\}$

1. $\{1,2,3,4,5,6\}$
2. The minimal closed sets of states in this Markov chain model are (circle all that apply!)
a. $\{1\}$
b. $\{2\}$
c. $\{3\}$
d. $\{4\}$
e. $\{5\}$
f. $\{6\}$
g. $\{1,2,3,4\}$
h. $\{1,2,3,4\}$
i. $\{5,6\}$
j. $\{2,3,4\}$
k. $\{3,4\}$
3. $\{1,2,3,4,5,6\}$
\qquad

Suppose that at the beginning of the Fall ' 00 semester, Joe Cool was aFreshman.
g 6. What is the probability that Joe is a junior in Fall 2002? (choose nearest answer)
a. 10%
c. 30%
e. 50%
g. 70% (68%)
i. 90%
b. 20%
d. 40%
f. 60%
h. 80% j. 100%
k. Not sufficient info.
e 7. What is the probability that Joe is a senior in Fall 2003? (choose nearest answer)
a. 10%
c. 30%
e. $50 \%(54.4 \%)$ g. 70%
f. 60% h. 80%
i. 90%
j. 100%
k. Not sufficient info
b. 20%
d. 40%
f. 60%
\qquad (choose nearest
g. $70 \%(72 \%)$
i. 90%
a. 10%
c. 30%
e. 50%
h. 80% j. 100%
h. 80% j. 100%
k. Not sufficient info
\qquad
b. 20%
d. 40%
f. 60%
a. 3 year
b. 3.75 years
c. 4 years
d. 4.25 years
e. 4.5 years
f. 4.75 years
g. 5 years
h. 5.25 years
i. 5.5 years Not sufficient info
j. ≥ 5.75 years

Note: $1.111+0.9876+0.9539+0.8479=3.8994$ This is less than 4 years because the drop-outs bring down the average length of stay!
_ e_{-}10. What fraction of students graduate in exactly four years? (choose nearest answer)
a. $\leq 25 \%$
c. 35%
e. $45 \%(46.254 \%)$ g. 55% i. 65% k. 75%
m. 85%
o. Not sufficient info
b. 30%
d. 40%
f. 50%
h. 60%
j. 70%

1. 80%
n. $\geq 90 \%$
\qquad

2. Discrete-time Markov Chains II:

Consider an (\mathbf{s}, \mathbf{S}) inventory system in which the number of items on the shelf is checked at the end of each day. The demand distribution is as follows:

$\mathrm{n}=$	0	1	2
$\mathrm{P}\{\mathrm{D}=\mathrm{n}\}$	0.2	0.5	0.3

To avoid shortages, the current policy is to restock the shelf at the end of each day (after spare parts have been removed) so that the shelf is again filled to its limit (i.e., 4) if there are fewer than 2 parts on the shelf. (That is, it is an (s, S) inventory system, with $s=2$ and $S=4$.)

The inventory system has been modeled as a Markov chain, with the state of the system defined as the end-of-day inventory level (before restocking). Refer to the computer output which follows to answer the following questions:

\qquad
c 3. the value $P_{2,0}$ is
a. $P\{$ demand $=0\}$
b. $P\{$ demand $=1\}$
c. $P\{$ demand $=2\}$
d. $\mathrm{P}\{$ demand $\leq 1\}$
e. $P\{$ demand $\geq 1\}$
f. none of the above
$\xrightarrow{\text { d }}$
4. If the shelf is full Monday morning, the expected number of days until astockout occurs is (select nearest value):
a. 2.5
b. 5
c. 7.5
d. 10
e. 12.5
f. 15
g. 17.5
h. 20
i. more than 20
_e
5. If the shelf is full Monday morning, the probability that the shelf is full Thursday night (i.e., after 4 days of sales) is (select nearest value):
a. 5\%
b. 6%
c. 7%
d. 8%
e. 9% (8.8%)
f. 10%
g. 11%
h. 12%
i. 13%
j. $\geq 14 \%$
_f
6. If the shelf is full Monday morning, the probability that the shelf is restocked Thursday night is (select nearest value):
a. 5%
b. 10%
c. 15%
d. 20%
e. 25%
f. 30% ($\mathbf{3 1 . 8 9 \%}$) g. 35%
h. 40%
i. 45%
j. $\geq 50 \%$
7. If the shelf is full Monday morning, the expected number of nights that the shelf is restocked during the next five nights is (select nearest value):
a. 0.25
b. 0.5
c. 0.75
d. 1
e. 1.25
f. 1.5 (1.403)
g. 1.75
h. 2
i. 2.25
j. ≥ 2.5
8. How frequently will the shelf be restocked? (select nearest value): once every $\mathbf{2 . 9 8 8}$ days
a. 0.5 days
b. 1 days
c. 1.5 days
d. 2 days
e. 2.5 days
f. 3 days
g. 3.5 days
h. 4 days
i. 4.5 days
j. ≥ 5 days
$\underline{-}$
a. 5%
b. 6%
c. 7%
d. 8%
e. 9%
f. 10%
g. 11%
h. 12%
i. 13%
j. $\geq 14 \%$
10. Circle one or more of the following equations which are among those solved to compute the steady state probability distribution:
a. $\pi_{0}=0.3 \pi_{2}$
b. $\pi_{4}=0.2 \pi_{2}+0.5 \pi_{3}+0.3 \pi_{4}$
c. $\pi_{3}=0.3 \pi_{0}+0.5 \pi_{1}+0.2 \pi_{2}$
d. $\pi_{2}=0.3 \pi_{0}+0.3 \pi \pi_{1}+0.2 \pi_{2}+0.5 \pi_{3}+0.3 \pi_{4}$
e. $\pi_{4}=0.3 \pi_{2}+0.5 \pi_{3}+0.2 \pi_{4}$
f. $\pi_{0}+\pi_{1}+\pi_{2}+\pi_{3}+\pi_{4}=1$

3. Birth/Death Model of a Queue:

A machine operator has sole responsibility for keeping three semi-automatic machines busy. The time required to ready a machine (unloading \& reloading) has exponential distribution with mean 15 minutes. The machine will then run unattended for an average of 1 hour (but with actual time having exponential distribution) before it requires the operator's attention again.

b,d,f_ 1. The Markov chain model diagrammed above is (select one or more):
a. a discrete-time Markov
d. a Birth-Death process
e. an $M / M / 1$ queue
c. a Poisson process
g. an M/M/3 queue
h. an $M / M / 1 / 3$ queue
-a_ 2. The value of λ_{2} is
a. $1 / \mathrm{hr}$.
b. $2 / \mathrm{hr}$.
c. $3 / \mathrm{hr}$
d. $4 / \mathrm{hr}$
e. $0.25 / \mathrm{hr}$.
f. $0.5 / \mathrm{hr}$.
g. none of the above
3. The value of μ_{2} is
a. $1 / \mathrm{hr}$.
b. $2 / \mathrm{hr}$.
c. $3 / \mathrm{hr}$
d. $4 / \mathrm{hr}$
e. $0.25 / \mathrm{hr}$.
f. $0.5 / \mathrm{hr}$.
g. none of the above
d
\qquad
c_ 4. The value of λ_{0} is
a. $1 / \mathrm{hr}$.
b. $2 / \mathrm{hr}$.
c. $3 / \mathrm{hr}$
d. $4 / \mathrm{hr}$
e. $0.25 / \mathrm{hr}$.
f. $0.5 / \mathrm{hr}$.
g. none of the above
- $\underline{-}{-} \quad$ 5. The steady-state probability π_{0} is computed by solving
a. $\frac{1}{\pi_{0}}=1+\frac{3}{4}+\left(\frac{3}{4}\right)^{2}+\left(\frac{3}{4}\right)^{3} \approx \frac{1}{0.366}$
b. $\frac{1}{\pi_{0}}=1+\frac{3}{4}+\frac{1}{2} \times \frac{3}{4}+\frac{1}{4} \times \frac{1}{2} \times \frac{3}{4} \approx \frac{1}{0.451}$
c. $\frac{1}{\pi_{0}}=1+\frac{3}{4}+\frac{1}{2}+\frac{1}{4} \approx \frac{1}{0.4}$
d. $\frac{1}{\pi_{0}}=1+\frac{1}{4}+\left(\frac{1}{4}\right)^{2}+\left(\frac{1}{4}\right)^{3} \approx \frac{1}{0.753}$
e. $\frac{1}{\pi_{0}}=1+\frac{3}{4}+\left(\frac{1}{2}\right)^{2}+\left(\frac{1}{4}\right)^{3} \approx \frac{1}{0.496}$
f. none of the above
d 6. The operator will be busy what fraction of the time? (choosenearestvalue) $1-\pi{0}=1-0.451$
a. 40%
b. 45%
c. 50%
d. 55%
e. 60%
f. 65%
g. 70%
h. $\geq 75 \%$
7. What fraction of the time will the operator be busy but with no machine waiting to be serviced?
(choose nearest value) $\pi_{1}=0.75 \pi_{0}=0.75(0.451)$
a. 10%
b. 20%
c. 30%
d. 40%
e. 50%
f. 60%
g. 70%
h. $\geq 80 \%$
a 8. Approximately 2.2 machines per hour require the operator's attention. What is the average length of time that a machine waits before the operator begins to ready the machine for the next job? (select nearest value)
a. 0.1 hr . (i.e., 6 min .)
b. 0.15 hr . (i.e., 9 min .)
c. 0.2 hr . (i.e., 12 min .)
d. 0.25 hr . (i.e., 15 min .)
e. 0.3 hr . (i.e., 18 min .)
f. greater than 0.33 hr . (i.e., >20 min.)

Solution: $\pi_{0}=0.451, \pi_{1}=0.338, \pi_{2}=0.169, \pi_{3}=0.0423$
Average arrival rate $=\bar{\lambda}=3 \pi_{0}+2 \pi_{1}+1 \pi_{2}+0 \pi_{3}=3(0.451)+2(0.338)+0.169=2.2 / \mathrm{hr}$
Average \# of machines waiting $=L_{q}=0 \pi_{0}+0 \pi_{1}+1 \pi_{2}+2 \pi_{3}=1(0.169)+2(0.423)=0.25$
By Little's Law, $L_{q}=\bar{\lambda} W_{q} \Rightarrow W_{q}=\frac{0.25}{2.2 / h r}=0.114 h r=6.8 \mathrm{~min}$
d 9. What will be the utilization of this group of 3 machines? (choose nearest value)
a. 60%
b. 65%
c. 70%
d. 75%
e. 80%
f. 85%
g. 90%
h. $\geq 95 \%$

Solution: Average \# machines operating $=3 \pi_{0}+2 \pi_{1}+1 \pi_{2}+0 \pi_{3}=2.2$
and so the utilization is $\frac{2.2}{3}=73.3 \%$
4. Integer Programming Model Formulation Part I. You have been assigned to arrange the songs on the cassette version of Madonna's latest album. A cassette tape has two sides (\#1 and \#2). The length and type of each song are given in the table below:

Song	Type	Length (minutes)
1	Ballad	4
2	Hit	5
3	Ballad	3
4	Ballad \& Hit	2
5	Ballad	4
6	Hit	3
7	neither ballad nor hit	5
8	Ballad \& hit	4

Define the variables

$$
Y_{i}=\quad 1 \text { if song } \# \mathrm{i} \text { is on side } 1
$$

0 otherwise (i.e., if on side 2)
Thus, $\quad 1-Y_{i}=1$ if song $\# i$ is on side 2 ;
0 otherwise (i.e., if on side 1)
\qquad

For each restriction, choose alinear constraint from the list (a) through (i) below.
g_ 1. Side \#2 must have at least 3 ballads \Rightarrow side 1 can have no more than 2 of the 5 ballads
c 2. Side \#1 must have at least 2 hit songs
_- ${ }^{\text {d }}$. If song $\# 2$ is on side 1 , then song \#3 must be on side 2
4. The number of hit songs on side 2 should be no more than $2 \Rightarrow$ side 1 can have at least 2 of the 4 hits
5. If both songs $1 \& 2$ are on side 1 , then song 3 must be on side 2 .
a. $Y_{2}+Y_{4}+Y_{6}+Y_{8} \geq 3$
b. $\mathrm{Y}_{2}+\mathrm{Y}_{4}+\mathrm{Y}_{6}+\mathrm{Y}_{8} \leq 2$
c. $Y_{2}+Y_{4}+Y_{6}+Y_{8} \geq 2$
d. $\mathrm{Y}_{2}+\mathrm{Y}_{3} \leq 1$
e. $Y_{1}+Y_{2}-Y_{3} \leq 2$
f. $Y_{1}+Y_{2}+Y_{3} \leq 2$
g. $Y_{1}+Y_{3}+Y_{4}+Y_{5}+Y_{8} \leq 2$
h. $\mathrm{Y}_{2}+\mathrm{Y}_{3} \geq 1$
i. $Y_{1}+Y_{2}-Y_{3} \geq 2$
j. $Y_{1}+Y_{2}+Y_{3} \leq 1$
k. $Y_{1}+Y_{3}+Y_{4}+Y_{5}+Y_{8} \leq 3$

1. None of the above

Part II. Comquat owns four production plants at which personal computers are produced. In order to use a plant to produce computers, a fixed cost must be paid to set up the production line in that plant.

Define the variables:
$\mathrm{Y}_{\mathrm{i}}=\quad 1$ if the production line has been set up at plant \#i
0 otherwise
$\mathrm{X}_{\mathrm{i}}=\#$ of computers produced at plant $\# \mathrm{i}$

For each restriction, choose a constraint from the list (a) through (l) below.
b 7. Computers are to be produced at no more than 3 plants.
_ 8. If the production line at plant 2 is set up, then that plant can produce up to 8000 computers; otherwise, none can be produced at that plant.
d 9. The production lines at plants 2 and 3 cannot both be set up.
g 10. The total production must be at least 20,000 computers.
f 11. If the production line at plant 2 is set up, that plant must produce at least 2000 computers.
k 12. If the production line at plant 2 is not set up, then the production line at plant 3 cannot be set up.

Constraints:

a. $\mathrm{Y}_{2} \leq 8000 \mathrm{X}_{2}$
b. $Y_{1}+Y_{2}+Y_{3}+Y_{4} \leq 3$
c. $Y_{1}+Y_{2}+Y_{3}+Y_{4} \geq 3$
d. $Y_{2}+Y_{3} \leq 1$
e. $Y_{2} \leq 2000 X_{2}$
f. $X_{2} \geq 2000 Y_{2}$
g. $X_{1}+X_{2}+X_{3}+X_{4} \geq 20000$
h. $\mathrm{Y}_{2}+\mathrm{Y}_{3} \geq 1$
i. $\mathrm{X}_{2} \leq 8000 \mathrm{Y}_{2}$
j. $Y_{2} \leq Y_{3}$
k. $\mathrm{Y}_{2} \geq \mathrm{Y}_{3}$

1. None of the above
\qquad
2. Deterministic Production Planning Production must be planned for each day of the next week (Sunday through Saturday). The following shipments have been planned for each day:

Day	Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
Required	1	3	1	4	2	2	1

Other data:

Production cost is $\$ 3$ for setup, plus $\$ 1$ per unit produced, up to a maximum of 3 units.
Storage cost: \$1 per unit stored (based upon beginning-of-day stock), up to a maximum of 5 units in storage
Salvage value: $\$ 2$ per unit in stock remaining in storage Saturday night
Initial inventory: 2 units are in stock Sunday morning.
A dynamic programming model was used to compute the optimal production quantities for each day in order to meet the shipment schedule.
The stages were numbered in abackward fashion, i.e., $n=7$ (Sunday), 6(Monday), .. 1(Saturday).
Several values have been blanked in the tables of computations-- compute them:
A = ___ 4 = cost of last day (Saturday) if stock is zero and 1 is produced.
$B=-\underline{11}=$ cost of Thursday through Saturday if on Thursday morning, 2 are in stock and 2 are produced.
$\mathrm{C}=\underline{16}=$ minimal cost of Wednesday through Saturday if 4 are in stock
$\mathrm{D}=\ldots \underline{0}=$ optimal production quantity on Wednesday if 4 are in stock
$\mathrm{E}=\underline{0} _$_ resulting stock on Thursday if 4 are in stock Wednesday $\&$ optimal quantity is produced
What is the minimum total cost of the schedule? \qquad
Complete the table below with the inventory levels and production quantities if the optimal schedule is used.

Day	SUN	MON	TUES	WED	THURS	FRI	SAT	final value
Inventory	2	1	0	1	0	0	0	2
Prod'n qty	0	2	2	3	2	2	3	

\qquad

s \ x:0			$\begin{gathered} \text { y) } \\ 2 \\ \hline \end{gathered}$	3
0	9999	$\mathrm{A}^{\text {A }}$	3	2
1	1	3	2	1
2	0	2	1	0
3	-1	1	0	-1
4	-2	0	-1	9999
5	-3	-1	9999	9999
---Stage 2 (Friday)---				
s \ x:0		1	2	3
0	9999	9999	7	7
1	9999	7	7	7
2	4	7	7	7
3	4	7	7	7
4	4	7	7	7
5	4	7	7	9999
---Stage 3 (Thursday)---				
s \x:0		1	2	3
0	9999	9999	12	13
1	9999	12	13	11
2	9	13	B]	12
3	10	11	12	13
4	8	12	13	14
5	9	13	14	9999
---Stage 4 (Wednesday)---				
s \ x:0		1	2	3
1	9999	9999	9999	19
2	9999	9999	19	19
3	9999	19	19	18
4	16	19	18	20
5	16	18	20	19
---Stage 5 (Tuesday)---				
$s \backslash x: 0$		1	2	3
0	9999	9999	24	25
1	9999	24	25	25
2	21	25	25	24
3	22	25	24	25
4	22	24	25	9999
5	21	25	9999	9999
---Stage 6 (Monday)---				
s \x:0		1	2	3
0	9999	9999	9999	30
1	9999	9999	30	31
2	9999	30	31	29
3	27	31	29	31
4	28	29	31	32
5	26	31	32	32
---Stage 7---				
s \x:0		1	2	3

Stage 7 (Sunday)Optimal Optimal Resulting			
State	Values	Decisions	State
2	32	0	1
<><><><><>><><><><><><><>><><>			
Stage 6 (Monday) :			
Optimal Optimal Resulting			
State	Values	Decisions	State
0	30	3	0
1	30	2	0
2	29	3	2
3	27	0	0
4	28	0	1
5	26	0	2
<><><><>><><><><><><><><<><><>			
Stage 5 (Tuesday) :			
Optimal Optimal Resulting			
State Values Decisions State			
0	24	2	1
1	24	1	1
2	21	0	1
3	22	0	2
4	22	0	3
5	21	0	4
<><><><><><><<><><><><><><><>			
Stage 4 (Wednesday):			
Optimal Optimal Resulting			
State	Values	Decisions	State
1	19	3	0
2	19	2	0
	18	3	2
	C_	D.	E
5	16	0	1
<><><><><><<><><><><><><><<><>			
Stage 3 (Thursday):			
Optimal Optimal Resulting			
State	Values	Decisions	State
0	12	2	0
1	11	3	2
2	9	0	0
3	10	0	1
4	8	0	2
5	9	0	3
<><><><>><><><><><><><>>>><><>			
Stage 2 (Friday):			
Optimal Optimal Resulting			
State	Values	Decisions	State
0	7	2	0
1	7	1	0
2	4	0	0
3	4	0	1
4	4	0	2
5	4	0	3
<><><><>><><><><><><><>>>><><>			
Stage 1 (Saturday):			
Optimal Optimal Resulting			
State	Values	Decisions	State
0	2	3	2
1	1	0	0
2	0	0	1
3	-1	0	2
4	-2	0	3

