page 1

Do one from Part One (28 pts.), and four from Part Two (18 pts. each)

<><><>><><>><><>><>

I. LINDO analysis

Problem Statement: McNaughton Inc. produces two steak sauces, spicy Diablo and mild Red Baron. These sauces are both made by blending two ingredients A and B. A certain level of flexibility is permitted in the formulas for these products. Indeed, the restrictions are that:

- i) Red Baron must contain no more than 75% of A.
- ii) Diablo must contain no less than 25% of A and no less than 50% of B

Up to 40 quarts of A and 30 quarts of B could be purchased. McNaughton can sell as much of these sauces as it produces at a price per quart of \$3.35 for Diablo and \$2.85 for Red Baron. A and B cost \$1.60 and \$2.05 per quart, respectively. McNaughton wishes to maximize its net revenue from the sale of these sauces.

Define	D = quarts of Diablo to be produced
	R = quarts of Red Baron to be produced
	$A_{I} = quarts of A$ used to make Diablo
	$A_2 = quarts of A$ used to make Red Baron
	$B_1 = quarts of B$ used to make Diablo
	$B_2 = quarts of B$ used to make Red Baron

The LINDO output for solving this problem follows:

MAX	3.35 D + 2.85 R - 1.6 A1 - 1.6	A2 - 2.05 B1 - 2.05 B2
SUBJEC		
	2) - D + AI + BI = 0	
	3) - R + AZ + BZ = 0	
	4) AI + AZ <= 40 E) $D1 + D2 <= 20$	
	(5) B1 + B2 <= 50	
	7) = 0.5 D + B1 >= 0	
	$(3) = 0.75 R + A^2 <= 0$	
END	0, 0., 5 R HZ <= 0	
	OBJECTIVE FUNCTION VALUE	
1)	99.000000	
VARIABL	E VALUE	REDUCED COST
D	50.00000	0.00000
R	20.000000	0.00000
Al	1 25.000000	0.00000
A2	2 15.000000	0.000000
BI	L 25.000000	0.000000
B2	2 5.00000	0.000000
POM		DIIAI DDICES
2		-2 350000
3	0.00000	-4.350000
4	,	0.750000
) 0.000000	0./50000

South a Citter a multi Estun

page 2

Name _____

 $\begin{array}{c} 0.000000\\ -1.999999\\ 2.000000\end{array}$

6)	12.500000
7)	0.00000
8)	0.00000

RANGES IN WHICH THE BASIS IS UNCHANGED

VARIABLE CURRENT ALLOWABLE ALLOWABLE D 3.350000 0.750000 0.500000 R 2.850000 0.500001 0.666666 A1 -1.600000 1.500001 0.666666 A2 -1.600000 1.500001 1.000000 B1 -2.050000 1.000000 1.500001 B2 -2.050000 1.000000 1.500001 B2 -2.050000 10.00000 10.000000 B2 -2.050000 10.000000 10.000000 B2 -0.000000 16.666668 3.333333 4 40.000000 50.00000 10.000000 5 30.000000 10.000000 12.500000 7 0.000000 2.500000 12.500000 8 0.00000 0.000 0.000 8 0.0000 0.000 0.000 1 0.000 0.000 0.000 2 A1 0.000 0.000 3 R 0.000				OB	J COEFFICI	IENT RANGES	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	VARIABLE	CURR	ENT	ALLOWABLE		ALLOWABLE	
D 3.350000 0.750000 0.500000 R 2.850000 0.500000 0.375000 Al -1.600000 1.500001 0.666666 D 2 -2.050000 1.500001 1.000000 B2 -2.050000 1.500001 1.000000 B2 -2.050000 1.000000 1.500000 B2 -2.050000 1.000000 1.0.000000 B2 0.000000 15.666668 3.333333 4 40.000000 15.000000 10.000000 5 30.000000 12.50000 10.000000 5 0.000000 12.50000 10.000000 THE TABLEAU: RFT 0.000 0.000 0.000 0.000 2 Al 0.000 0.000 1.2.50000 THE TABLEAU: RFT 0.000 0.000 0.000 0.000 2 Al 0.000 0.000 1.000 5 B2 0.00000 0.000 0.000 4 A2 0.000 0.000 0.000 0.000 5 B2 0.000 0.000 0.000 0.000 6 SLK 6 0.000 0.000 0.000 0.000 7 D 1.000 0.000 0.000 0.000 8 B1 0.000 0.000 0.000 0.000 7 D 1.000 0.000 0.000 0.000 8 B1 0.000 0.000 0.000 0.000 7 D 1.000 0.000 0.000 0.000 8 B1 0.000 0.000 0.000 0.000 8 B1 0.000 0.000 0.000 0.000 7 D 1.000 0.000 0.000 0.000 8 B1 0.000 0.000 0.000 0.000 7 D 1.000 0.000 0.000 0.000 8 B1 0.000 0.000 0.000 0.000 8 B1 0.000 0.000 0.000 7 D 1.000 0.000 0.000 0.000 8 B1 0.000 0.000 0.000 7 D 1.000 0.000 0.000 8 B1 0.000 0.000 0.000 7 0 0.000 0.000 0.000 0.000 8 B1 0.000 0.000 0.000 7 0 0.000 0.000 0.000 8 B1 0.000 0.000 0.000 7 0 0.000 0.000 0.000 8 B1 0.000 0.000 0.000 7 0 0.000 0.000 0.000 7 0 0.000 0.000 0.000 8 B1 0.000 0.000 0.000 7 0 0.000 0.000 0.000 7 0 0.000 0.000 0.000 8 B1 0.000 0.000 0.000 7 0 0.000 0.000 0.000 7 0 0.000 0.000 0.000 8 0.000 0.000 0.000 7 0 0.000 0.000 0.000 8 0.000 0.000 0.000 8 0.000 0.000 0.000 7 0.000 0.000 0.000 7 0.000 0.000 0.000 8 0.000 0.000 0.000 8 0.000 0.000 0.000 7 0.000 0.000 0.000 8 0.000 0.000 0.000 8 0.000 0.000 0.000 7 0.000 0.000 0.000 8 0.000 0.000 0.000 0.00		C	OEF	INCREASE		DECREASE	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	D	3.3	50000	0.750000		0.500000	
A1 -1.600000 1.500001 0.666666 A2 -1.600000 1.500001 1.000000 B1 -2.050000 1.500001 1.000000 B2 -2.050000 1.500001 1.000000 B2 -2.050000 1.000000 1.500001 B2 -2.050000 1.000000 1.500001 B2 -2.050000 1.000000 1.500001 B2 -2.050000 1.000000 1.500000 CURRENT ALLOWABLE ALLOWABLE COM CURRENT ALLOWABLE DECREASE 2 0.000000 16.666668 3.33333 4 40.000000 50.00000 10.000000 5 30.000000 12.50000 Imprinity 7 0.000000 2.50000 50000 8 0.0000 0.000 0.000 0.000 4 A2 0.000 0.000 0.000 6 SLK 6 0.000 0.000 0.000 7	R	2.8	50000	0.500000		0.375000	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Al	-1.6	00000	1.500001		0.666666	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	A2	-1.6	00000	0.666666		0.500000	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Bl	-2.0	50000	1.500001		1.000000	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	B2	-2.0	50000	1.000000		1.500001	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $							
ROW CURRENT ALLOWABLE ALLOWABLE DECREASE 2 0.000000 10.00000 10.00000 3 0.000000 16.66668 3.333333 4 40.00000 10.00000 10.00000 5 30.000000 10.000000 10.00000 6 0.000000 12.500000 INFINITY 7 0.000000 2.500000 5.00000 8 0.000000 2.500000 12.50000 THE TABLEAU: XAT 0.000 0.000 0.000 2 A1 0.000 0.000 0.000 3 R 0.000 0.000 0.000 4 A2 0.000 0.000 0.000 4 A2 0.000 0.000 0.000 5 B2 0.000 0.000 0.000 6 SLK 6 0.000 0.000 0.000 7 D 1.000 0.000 0.000 6 SLK 6	DOM	G 112.5			RIGHTHAND	SIDE RANGES	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	ROW	CURR	EN.I.	ALLOWAB	LE	ALLOWABLE	
2 0.000000 10.00000 10.00000 3 0.000000 10.00000 10.00000 4 40.000000 50.000000 10.000000 5 30.000000 10.000000 16.66668 6 0.000000 12.500000 INFINITY 7 0.000000 2.500000 12.500000 8 0.000000 2.500000 12.500000 2 A1 0.000 0.000 0.000 2 A1 0.000 0.000 0.000 0.000 3 R 0.000 0.000 0.000 0.000 3 R 0.000 0.000 0.000 0.000 4 A2 0.000 0.000 0.000 0.000 5 B2 0.000 0.000 0.000 0.000 6 SLK 6 0.000 0.000 0.000 7 D 1.000 0.000 0.000 8 B1 0.000 0.000	0	0 0	RHS	INCRE	ASE	DECREASE	
3 0.000000 10.00000 10.00000 10.00000 5 30.00000 10.00000 10.00000 16.666664 6 0.000000 12.50000 INFINITY 7 0.000000 2.50000 5.00000 8 0.000000 2.50000 5.00000 1 ART 0.000 0.000 0.000 2 A1 0.000 0.000 0.000 3 R 0.000 0.000 0.000 4 A2 0.000 0.000 0.000 3 R 0.000 0.000 0.000 4 A2 0.000 0.000 0.000 5 B2 0.000 0.000 0.000 6 SLK 6 0.000 0.000 0.000 7 D 1.000 0.000 0.000 8 B1 0.000 0.000 0.000 2 0.000 0.000 -5.00 0.000	2	0.0	00000	10.000		LU.UUUUUU	
4 4 10.00000 50.00000 10.00000 5 30.000000 12.500000 IS.66664 6 0.000000 2.500000 5.000000 7 0.000000 2.500000 12.500000 8 0.000000 2.500000 12.500000 THE TABLEAU: No No No No 2 A1 0.000 0.000 0.000 3 R 0.000 0.000 0.000 4 A2 0.000 0.000 0.000 5 B2 0.000 0.000 0.000 6 SLK 6 0.000 0.000 0.000 7 D 1.000 0.000 0.000 8 B1 0.000 0.000 0.000 2 0.000 0.000 -2.000 0.000 3 0.000 0.000 -2.000 0.000 2 0.000 0.000 -2.000 0.000 3	3	0.0	00000	10.000	0000	3.333333	
3 30.000000 10.00000 10.00000 INFINITY 6 0.000000 6.250000 5.000000 8 0.000000 2.500000 12.500000 THE TABLEAU: ROW (BASIS) D R A1 A2 1 ART 0.000 0.000 1.000 0.000 0.000 2 A1 0.000 0.000 1.000 0.000 0.000 3 R 0.000 0.000 0.000 1.000 0.000 4 A2 0.000 0.000 0.000 0.000 0.000 6 SLK 6 0.000 0.000 0.000 0.000 7 D 1.000 0.000 0.000 0.000 8 B1 0.000 0.000 -2.000 0.000 2 0.000 0.000 -2.000 0.000 -2.000 3 0.000 0.000 -1.500 0.000 -2.000 4	4 E	40.0	00000	50.000	0000	10.000000	
0 0.000000 12.50000 5.00000 7 0.000000 2.500000 12.500000 8 0.000000 2.500000 12.500000 THE TABLEAU: ROW (BASIS) D R A1 A2 1 ART 0.000 0.000 1.000 0.000 2 A1 0.000 0.000 0.000 3 R 0.000 0.000 0.000 4 A2 0.000 0.000 0.000 5 B2 0.000 0.000 0.000 6 SLK 6 0.000 0.000 0.000 7 D 1.000 0.000 0.000 8 B1 0.000 0.000 0.000 2 0.000 0.000 -1.500 0.000 3 0.000 0.000 -0.500 1.500 0.000 4 0.000 0.000 -0.500 1.500 0.000 4 0.	5	30.0	00000	10.000		10.000004	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	6 7	0.0	00000	12.500 6 250	0000	E 00000	INFINIIY
B D.00000 P.00000 P.00000 THE TABLEAU: ROW (BASIS) D R A1 A2 1 ART 0.000 0.000 0.000 0.000 2 A1 0.000 0.000 0.000 0.000 3 R 0.000 0.000 0.000 0.000 4 A2 0.000 0.000 0.000 0.000 5 B2 0.000 0.000 0.000 0.000 6 SLK 6 0.000 0.000 0.000 0.000 7 D 1.000 0.000 0.000 0.000 8 B1 B2 SLK 4 SLK 5 SLK 6 1 0.000 0.000 -0.500 1.500 0.000 2 0.000 0.000 -0.500 0.000 2.300 0.000 3 0.000 0.000 -0.500 0.000 2.300 0.000 4	7	0.0	00000	0.250	0000	12 500000	
THE TABLEAU: $\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0	0.0	00000	2.500	5000	12.500000	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	THE TABLEAU:						
I ART 0.000 0.000 0.000 0.000 2 A1 0.000 1.000 0.000 0.000 3 R 0.000 1.000 0.000 0.000 4 A2 0.000 0.000 0.000 1.000 5 B2 0.000 0.000 0.000 0.000 6 SLK 6 0.000 0.000 0.000 0.000 7 D 1.000 0.000 0.000 0.000 8 B1 0.000 0.000 0.000 0.000 2 0.000 0.000 -2.000 0.000 3 0.000 0.000 -2.000 0.000 4 0.000 0.000 -1.500 0.000 5 0.000 1.000 0.500 -0.500 0.000 4 0.000 0.000 -1.500 0.000 -0.000 5 0.000 0.000 -1.500 1.500 0.000<	ROW	(BASTS)	D	R	Δ1	Δ2	
1 1 0.000 0.000 1.000 0.000 3 R 0.000 1.000 0.000 0.000 4 A2 0.000 0.000 0.000 1.000 5 B2 0.000 0.000 0.000 0.000 6 SLK 6 0.000 0.000 0.000 0.000 7 D 1.000 0.000 0.000 0.000 8 B1 0.000 0.000 0.000 0.000 2 0.000 0.000 -2.000 0.000 3 0.000 0.000 -2.000 0.000 2 0.000 0.000 -2.000 0.000 3 0.000 0.000 -0.500 1.500 0.000 4 0.000 0.000 -0.500 0.000 0.000 5 0.000 1.000 0.500 -0.500 0.000 6 0.000 0.000 -0.500 1.500 0.000 7 0.000 0.000 -0.500 1.500 0.000	1	ART	0.000	0.000	0.000	0.000	
3 R 0.000 1.000 0.000 0.000 4 A2 0.000 0.000 0.000 1.000 5 B2 0.000 0.000 0.000 0.000 6 SLK 6 0.000 0.000 0.000 0.000 7 D 1.000 0.000 0.000 0.000 8 B1 0.000 0.000 0.000 0.000 2 0.000 0.000 2.300 0.000 2 0.000 0.000 2.300 0.000 3 0.000 0.000 2.300 0.000 4 0.000 0.000 2.300 0.000 3 0.000 0.000 2.000 -2.000 0.000 4 0.000 0.000 -1.500 0.000 4 0.000 0.000 -1.000 3.000 0.000 5 0.000 0.000 -1.000 3.000 0.000 7	2	A1	0.000	0.000	1.000	0.000	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3	R	0.000	1.000	0.000	0.000	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	4	A2	0.000	0.000	0.000	1.000	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	5	В2	0.000	0.000	0.000	0.000	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	6	SLK 6	0.000	0.000	0.000	0.000	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	7	D	1.000	0.000	0.000	0.000	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	8	Bl	0.000	0.000	0.000	0.000	
NOWD1D2D1K 4D1K 5D1K 61 0.000 0.000 0.750 2.300 0.000 2 0.000 0.000 1.500 1.500 0.000 3 0.000 0.000 2.000 -2.000 0.000 4 0.000 0.000 1.500 -1.500 0.000 5 0.000 1.000 0.500 -0.500 0.000 6 0.000 0.000 -0.250 0.750 1.000 7 0.000 0.000 -1.000 3.000 0.000 8 1.000 0.000 -0.500 1.500 0.000 2 3.000 2.000 29.000 25.000 3 -4.000 -4.000 20.000 5.000 4 -3.000 -2.000 5.000 5 -1.000 -2.000 5.000 6 2.000 1.000 12.500 7 4.000 4.000 50.000 8 1.000 2.000 25.000	ROW	в1	вĴ	SIK 4	SIK 2	SIK 6	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1	0 000	0 000	0 750	2 300	0 000	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2	0.000	0.000	-0.500	1 500	0.000	
4 0.000 0.000 1.500 -1.500 0.000 5 0.000 1.000 0.500 -0.500 0.000 6 0.000 0.000 -0.250 0.750 1.000 7 0.000 0.000 -1.000 3.000 0.000 8 1.000 0.000 -0.500 1.500 0.000 2 3.000 2.000 99.000 2.000 25.000 3 -4.000 -4.000 20.000 5.000 5.000 4 -3.000 -2.000 5.000 5.000 5.000 6 2.000 1.000 12.500 7 4.000 4.000 50.000 8 1.000 2.000 25.000 5.000 5.000 5.000	3	0.000	0.000	2.000	-2.000	0.000	
5 0.000 1.000 0.500 -0.500 0.000 6 0.000 0.000 -0.250 0.750 1.000 7 0.000 0.000 -1.000 3.000 0.000 8 1.000 0.000 -0.500 1.500 0.000 2 3.000 2.000 99.000 2.000 25.000 3 -4.000 -4.000 20.000 5.000 4 -3.000 -2.000 5.000 5 -1.000 -2.000 5.000 6 2.000 1.000 12.500 7 4.000 4.000 50.000 8 1.000 2.000 25.000	4	0.000	0.000	1.500	-1.500	0.000	
6 0.000 0.000 -0.250 0.750 1.000 7 0.000 0.000 -1.000 3.000 0.000 8 1.000 0.000 -0.500 1.500 0.000 8 1.000 2.000 99.000 2.3.000 2.000 25.000 3 -4.000 -4.000 20.000 15.000 5.000 4 -3.000 -2.000 5.000 5.000 6 2.000 1.000 12.500 7 4.000 4.000 50.000 8 1.000 2.000 25.000	5	0.000	1.000	0.500	-0.500	0.000	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	6	0.000	0.000	-0.250	0.750	1.000	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	7	0.000	0.000	-1.000	3.000	0.000	
ROW SLK 7 SLK 8 RHS 1 2.000 2.000 99.000 2 3.000 2.000 25.000 3 -4.000 -4.000 20.000 4 -3.000 -2.000 15.000 5 -1.000 -2.000 5.000 6 2.000 1.000 12.500 7 4.000 4.000 50.000 8 1.000 2.000 25.000	8	1.000	0.000	-0.500	1.500	0.000	
ROWSLK 7SLK 8RHS1 2.000 2.000 99.000 2 3.000 2.000 25.000 3 -4.000 -4.000 20.000 4 -3.000 -2.000 15.000 5 -1.000 -2.000 5.000 6 2.000 1.000 12.500 7 4.000 4.000 50.000 8 1.000 2.000 25.000							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	ROW	SLK 7	SLK 8	RHS			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	l	2.000	2.000	99.000			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2	3.000	2.000	25.000			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3	-4.000	-4.000	20.000			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4	-3.000	-2.000	T2.000			
7 4.000 4.000 50.000 8 1.000 2.000 25.000	5	-1.000	-2.000	5.000			
8 1.000 2.000 25.000	0 7	4 000	1 000	12.300 50 000			
	8	1.000	2.000	25.000			

1. How many quarts of "Red Baron" are produced in the optimal solution?

2. How much profit does the firm make on these two products?

3. What *additional* amount should the firm be willing to pay to have another quart of ingredient A available? _____ What is the *total* amount the firm should be willing to pay for another quart of ingredient A? _____ How many quarts should they be willing to buy at this cost?

56:171 O.R. Final Exam page 3 Name _____

- 4. If one more quart of ingredient A were to be used, what would be the changes in
 - the "slack variable" in row #4? _____ (increase/decrease)
 - the "slack variable" in row #6? _____ (increase/decrease)
 - the quantity of A used in producing "Red Baron"? _____ (increase/decrease)
 - the quantity of A used in producing "Diablo"? _____ (increase/decrease)
 - the quantity of "Diablo" produced? _____ (increase/decrease)
 - the quantity of "Red Baron" produced? _____ (increase/decrease)
- How much can the price of "Red Baron" increase before the composition of the current optimal product mix changes?
- 6. What is the optimal value of the objective function of the LP which is the dual of this problem?
 ______. This dual LP objective is (circle one:) minimized / maximized.
- **II. Simplex Algorithm for LP:** At an intermediate step of the simplex algorithm, in which the objective is to be **minimized**, the tableau is:

_ z	2	х ₁	x2	х ₃	×4	х ₅	х _б	RHS				
1 0		0 1	0 0	0 1	2 4	0 0	-1 1	-10 4				
0		0	1	0	2	0	-1	3				
0		-1	0	0	-2	1	3	1				
1.	What	are th -Z	ie basi Z	c varia X ₁	bles for X2	this tab X3	oleau? (circle): X ₄	X5	x ₆		RHS
2.	The c	curren	t valu	e of z	for this	basic so	olution i	s (circle	: +10 or	r -10)		
3.	The c	curren	t valu	e of X ₁ b.	for thi	s basic	solution	n is	d. 4		e.	10
4.	The c	curren . 0	t valu	e of X ₂ b.	for thi 1	s basic	solution c. 3	n is	d. 4		e.	10
5.	5. The current value of X ₃ for this basic solution is a. 0 b. 1 c. 3 d. 4 e. 10						10					
6.	6. Increasing X_4 would (<i>circle:</i> increase / decrease) the objective function.											
7.	7. What is the substitution rate of X_4 for X_5 ? a. 0 b. 1 c1 d. 2 e2											
8.	If X ₄ a d	were . not . incr	increa chang rease b	sed by ge by 4	2 units,	the val b. incre e. decre	ue of X ease by 2 ease by 4	5 will 2 4	c. dec f. non	crease by the of the a	2 above	

9. Perform a pivot on the tableau above to improve the objective function, and write the new tableau below:

⁻z x₁ x₂ x₃ x₄ x₅ x₆ RHS

56:171 O.R. Fina	l Exam	page 4	Name	e	
-					
-					
-					
-					
-					
10. What	is the improvement in the ol	ojective resulting	from the pivot in	(9)?	
11. If the	original constraints were of	type "≤" and X4, 2	X5, and X6 are sl	ack variables, the	value of the
first dual v	variable π_1 corresponding to	the first tableau a	bove is		
a.	0 b. 1	c1	d. 2	e2	
f.	none of the above	g. cannot be	determined		
12. If the	original constraints were of	type "≥" and X4, I	X5, and X6 are su	urplus variables, th	ne value of the
first dual v	variable π_1 corresponding to	the first tableau a	bove is		
a.	0 b. 1	c1	d. 2	e2	
f.	none of the above	g. cannot be	determined		

Name

<><><><>> PART TWO <><><>>

III. Decision Analysis: A company is considering the introduction of a new product. Past experience leads them to believe that it will either be very successful, or a failure, and to estimate the probability of success to be **75%**. If successful, the profit will be **100** thousand dollars. If not successful, the loss will be **75** thousand dollars. A market survey firm has offered to conduct a survey at a cost of **10** thousand dollars. This market survey firm's accuracy is estimated to be **80%** (i.e., for products which have been successful, the firm has correctly predicted success 80% of the time, and for products which have been unsuccessful, the firm has also predicted no success 80% of the time). The company has constructed the following decision tree to help them in the planning. (Squares represent decisions, and circles represent chance nodes.)

- 1. There are six numerical values missing in the decision tree (indicated by a through f in the bold rectangles). Compute these values:
 - a. probability that market survey firm predicts successful product ____
 - b. probability that market survey firm predicts unsuccessful product _____
 - c. probability that product is successful if success is predicted _____
 - **d**. probability that product is unsuccessful if success is predicted _____
 - e. "payoff" if product is successful and market survey predicts success _____
 - f. "payoff" if product is successful and market survey predicts no success
- 2. "Fold back" nodes 2 through 8, and write the value of each node below:

	Node	Value	Node	Value	Node	Value
	8		5	-10	2	46.25
	7		4		1	
	6	56.25	3			
3. Shou	3. Should the company buy the market survey?					

- 4. What is the expected value of the market survey?
- 5. What would be the expected value of "perfect information", i.e., a prediction which is 100% accurate, so that the portion of the tree containing nodes 2, 4, 5, etc., would appear as below?

Name

4. Markov Chain Model--(s,S) Inventory System: Consider the following inventory system for a certain spare part for a company's 2 production lines. A maximum of four parts may be kept on the shelf. At the end of each day, the parts in use are inspected and, if worn, replaced with one off the shelf. The probability distribution of the number replaced each day is:

m= 0	-	-
$P\{n\} = 0.3$	0.5	0.2

c. $P\{\text{demand}=2\}$

To avoid shortages, the current policy is to restock the shelf at the end of each day (after spare parts have been removed) so that the shelf is again filled to its limit (i.e., 4) **if** there are fewer than 2 parts on the shelf.

The inventory system has been modeled as a Markov chain, with the state of the system defined as the end-of-day inventory level (before restocking). Refer to the computer output which follows to answer the following questions: Note that in the computer output, state #1 is inventory level 0, state #2 is inventory level 1, etc.

$$P^{4} = \begin{bmatrix} 0 & 0 & 0.2 & 0.5 & 0.3 \\ 0 & 0 & 0.2 & 0.5 & 0.327 \\ 0 & 0.046 & 0.125 & 0.327 & 0.255 & 0.099 \\ 0 & 0.046 & 0.185 & 0.328 & 0.315 & 0.126 \\ 0 & 0.068 & 0.208 & 0.291 & 0.292 & 0.141 \\ 0 & 0.074 & 0.245 & 0.327 & 0.255 & 0.099 \\ 0 & 0.068 & 0.208 & 0.291 & 0.292 & 0.141 \\ 0 & 0.074 & 0.245 & 0.327 & 0.255 & 0.099 \\ 0 & 0.068 & 0.208 & 0.291 & 0.292 & 0.141 \\ 0 & 0.074 & 0.245 & 0.327 & 0.255 & 0.099 \\ \end{bmatrix}, P^{4} = \begin{bmatrix} 0 & 0.065 & 0.214 & 0.309 & 0.285 & 0.125 \\ 0 & 0.065 & 0.227 & 0.327 & 0.273 & 0.107 \\ 0 & 0.058 & 0.203 & 0.316 & 0.296 & 0.125 \\ 0 & 0.058 & 0.203 & 0.316 & 0.296 & 0.125 \\ 0 & 0.058 & 0.203 & 0.316 & 0.296 & 0.125 \\ 0 & 0.058 & 0.203 & 0.316 & 0.296 & 0.125 \\ 0 & 0.058 & 0.203 & 0.316 & 0.296 & 0.125 \\ 0 & 0.058 & 0.203 & 0.316 & 0.296 & 0.125 \\ 0 & 0.058 & 0.203 & 0.316 & 0.296 & 0.125 \\ 0 & 0.058 & 0.203 & 0.316 & 0.296 & 0.125 \\ 0 & 0.058 & 0.203 & 0.316 & 0.296 & 0.125 \\ 0 & 0.058 & 0.203 & 0.316 & 0.296 & 0.125 \\ 0 & 0.262 & 0.9219 & 1.4477 & 1.0781 & 0.3261 \\ 0 & 0.2622 & 0.9219 & 1.4477 & 1.0781 & 0.3261 \\ 0 & 0.2662 & 0.9219 & 1.4477 & 1.0781 & 0.3261 \\ 0 & 0.063 & 0.317 \\ 15 & 0.063 & 2.307 & 3.514 & 10.816 \\ 15 & .769 & 4.641 & 3.076 & 2.571 & 8.367 \\ 15 & .769 & 4.641 & 3.076 & 2.571 & B \\ 0 & .19 \\ 1 & the value P_{5,4} is \\ a & P(demad=0) & b & P(demad=1) \\ \end{bmatrix}$$

d. P{demand 1}

56:171 O.R. Final Exam	page 7	Name
e. P{demand 1}2. the value P_{2,4} is	f. none of the	e above
a. P{demand=0}	b. P{demand	l=1}
c. $P\{\text{demand}=2\}$	d. P{demand	[1]
e. P{demand 1}	f. none of the	above
3. the value $P_{2,1}$ is	i. none of un	
a $P\{\text{demand}=0\}$	b P{demand	l=1 }
$c = P\{demand=2\}$	d P{demand	[1]
$e P\{\text{demand } 1\}$	f none of the	above
4 the numerical value A in the matrix a	nove is	
	b 01	
c 02	d 03	
e. 0.2	t 0.5	
5. the numerical value B in the mean-fi	t-passage time matrix (N	A) above is (select nearest value)
a. 1	h. 2	
c. 4	d 6	
e. 8	f. 10	
6 If the shelf is full Monday morning t	e expected number of d	avs until a stockout occurs is (select
nearest value).	expected number of d	iys until a stockout occurs is (sereer
a^{2}	h 5	
c. 10	d 15	
e. 20	f more than	20
7 If the shelf is full Monday morning t	e probability that the sh	elf is full Wednesday night is (solact
nearest value):	to probability that the sit	en is fun wednesday inght is (select
a 7%	h 8%	
c. 9%	d 10%	
e 11%	f more than	12%
8 If the shelf is full Monday morning t	e probability that the sh	elf is restocked Wednesday night is
(select nearest value).	e probability that the sh	ion is restocked weaked and any hight is
a 10%	b 15%	
c. 20%	d 25%	
e. 30%	f. more than	30%
9. If the shelf is full Monday morning, t	e expected number of ni	ghts that the shelf is restocked before
Friday morning is (select nearest val	e):	8
a. 0.6	b. 0.7	
c. 0.8	d. 0.9	
e. more than once but less than twic	f. more than	2
10. The number of transient states in th	Markov chain model is	
a. zero	b. 1	
c. 2	d. 5	
e. no	e of the above	
11. The number of recurrent states in the	s Markov chain model is	5
a. zero	b. 1	
c. 2	d. 5	
e. no	e of the above	
12. The number of absorbing states in t	is Markov chain model i	s
a. zero	b. 1	
c. 2	d. 5	
e. no	e of the above	
13. Which (one or more) of the following	g equations are among th	ose solved to compute the steady state
probability distribution?		
a. $\pi_1 = 0.2\pi_3$		
b. $\pi_1 = 0.2\pi_3 + 0.5\pi_4 + 0.3\pi_4$		
c. $\pi_3 = 0.2\pi_1 + 0.2\pi_2 + 0.3\pi_3$	$+0.5\pi_4+0.2\pi_5$	
d. $\pi_4 = 0.2\pi_2 + 0.5\pi_3 + 0.3\pi_4$		
e. $\pi_1 + \pi_2 + \pi_3 + \pi_4 + \pi_5 = 1$		

page 8

5. Discrete-time Markov chain--Multistage Manufacturing System: Consider a system of 2 machines, with inspection of a part after each machining operation:

entering blank →→ parts	M1 11)	I2 P&S	\longrightarrow to the customer
Relevant data are:				
	Time Rqmt.	Operating Cost	Scrap rate	% sent back
Operations	(man-hrs)	(\$/hr.)	00	for rework
Machine 1	1	10	10	
Inspection 1	0.25	10	5 5	
Machine 2	1	15	5	
Inspection 2	0.5	15	15 5	
Pack & Ship	0.5	10		

The manufacturing system is modeled as a discrete-time Markov chain with 6 states and the transition probability matrix:

$$P = \begin{bmatrix} Q & R \\ O & I \end{bmatrix} = \begin{bmatrix} 0 & 0.9 & 0 & 0 & 0 & 0.1 \\ 0.05 & 0 & 0 & 0.95 & 0 & 0.05 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

$$P^{5} = \begin{bmatrix} 0 & 0.001823 & 0 & 0.07118 & 0.6156 & 0.3114 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0.02243 & 0.7961 & 0.2049 \\ 0 & 0 & 0 & 0 & 0.002143 & 0.7961 & 0.2049 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

$$E = (I - Q)^{-1} = \begin{bmatrix} 1.047 & 0.9424 & 0.8905 & 0.8459 \\ 0.05236 & 1.047 & 0.9894 & 0.3999 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}, A = ER = \begin{bmatrix} 0.6768 & 0.3232 \\ 0.7519 & 0.2481 \\ 0.7979 & 0.2021 \\ 0.8399 & 0.1601 \end{bmatrix}$$
1. The number of transient states in this Markov chain is a zero d. b. two c. four d. six e. None of the above 2. The number of parts which must be scrapped is (choose nearest value): a. 15\% & b. 20\% & c. 25\% \\ d. 30\% & c. 35\% & f. more than 40\%
4. The expected number of blanks which must be processed in order to produce 100 parts is (choose nearest value): a. 110 & b. 120 & c. 130 \\ d. 140 & c. 150 & f. more than 40\%
5. The probability that a part will be successfully completed if it must be reworked on the first machine is (choose nearest value): a. 20 & b. 25 & c. 30 \\ d. 35\% & c. 80\% & f. less than 60\%
6. The expected number of man-hours at the first inspection station in order to successfully produce 100 parts is (choose nearest value): a. 20 & b. 25 & c. 30 \\ d. 35\% & c. 80\% & f. less than 60\%
6. The expected number of man-hours at the first inspection station in order to successfully produce 100 parts is (choose nearest value): a. 20 & b. 25 & c. 30 \\ d. 35\% & c. 80\% & f. less than 60\%
6. The expected number of man-hours at the first inspection station in order to successfully produce 100 parts is (choose nearest value): a. 40\% & c. 55\% & f. more than 45 man-hours
7. The probability that a part is successfully completed with no reworking is (choose nearest value): a. 45\% & b. 50\% & c. 55\% & f. more than 70\%

9. What

e. 70%

page 9

6. BIRTH/DEATH MODEL: A machine operator has sole responsibility for keeping three semi-automatic machines busy. The time required to ready a machine (unloading & reloading) has exponential distribution with mean 15 minutes. The machine will then run unattended for an average of 1 hour (but with actual time having exponential distribution) before it requires the operator's attention again.

1. The Ma	arkov chain model diagrammed above	is (select one or more):
а	a. a discrete-time Markov chain	b. a continuous-time Markov chain
C	e. a Birth-Death process	d. an M/M/1 queue
e	e. an M/M/3 queue	f. an $M/M/1/3$ queue
g	g. an M/M/1/3/3 queue	h. a Poisson process
2. The val	ue of λ_2 is	
а	a. 1/hr.	b. 2/hr.
C	c. 3/hr.	d. 4/hr.
e	e. 0.5/hr.	f. none of the above
3. The val	ue of μ_2 is	
а	a. 1/hr.	b. 2/hr.
C	c. 3/hr.	d. 0.5/hr.
e	e. 0.5/hr.	f. none of the above
4. The val	ue of λ_0 is	
а	a. 1/hr.	b. 2/hr.
C	e. 3/hr.	d. 0.5/hr.
e	e. 0.5/hr.	f. none of the above
5. The ste	ady-state probability π_0 is computed b	y computing
	a. $\frac{1}{\pi_0} = 1 + \frac{3}{4} + \frac{1}{2} + \frac{1}{4} = \frac{1}{0.4}$	
	b. $\frac{1}{\pi_0} = 1 + \frac{3}{4} + \frac{3}{4} \times \frac{1}{2} + \frac{3}{4} \times \frac{1}{2} \times \frac{1}{4}$	$\approx \frac{1}{0.451}$
	c. $\frac{1}{\pi_0} = 1 + \frac{3}{4} + \left(\frac{3}{4}\right)^2 + \left(\frac{3}{4}\right)^3 \approx \frac{1}{0.5}$	1
	d. $\frac{1}{\pi_0} = 1 + \frac{1}{4} + \left(\frac{1}{4}\right)^2 + \left(\frac{1}{4}\right)^3 \approx \frac{1}{0}$	1 753
	$1 - 3 - (1)^2 - (1)^3$	1
	e. $\frac{1}{\pi_0} = 1 + \frac{3}{4} + (\frac{1}{2}) + (\frac{1}{4})^* \approx \frac{1}{0.4}$	496
f f	f. none of the above	
6. The ope	erator will be busy what fraction of the	e time? (choose nearest value)
8	a. 40%	b. 45%
C	2. 50%	d. 60%
e		$f_{\rm c} = 10^{-10}$
/. What If	raction of the time will the operator be	busy but with no machine waiting to be serviced?
(choose ne		h 2004
0 0	× 30%	d 40%
	> 50%	f 60%
L L		1. 0070

8. Approximately 2.2 machines per hour require the operator's attention. What is the average length of time that a machine waits before the operator begins to ready the machine for the next job? (select nearest value)

f. greater than 75%

a.	0.1 hr. (i.e.,6 min.)	b. 0.15 hr. (i.e., 9 min.)
c.	0.2 hr. (i.e., 12 min.)	d. 0.25 hr. (i.e., 15 min.)
e.	0.3 hr. (i.e., 18 min.)	f. greater than 0.33 hr. (i.e., >20 min.)
wil	l be the utilization of this group of 3	machines? (choose nearest value)
a.	50%	b. 55%
c.	60%	d. 65%

- 7. Dynamic Programming: Consider a production/inventory system with the following characteristics:
 - Maximum inventory level is 8
 - Storage costs are \$1/week per unit in inventory at the beginning of the week
 - Maximum production level is 6/week
 - Setup cost for production is \$10 in each week during which production is scheduled
 - Marginal production costs (costs in excess of setup cost) are \$2 per unit
 - Demand in each of the next 6 weeks is assumed to be known and <u>must</u> be satisfied:

Week #	1	2	3	4	5	6
Stage #	6	5	4	3	2	1
Demand:	4	4	3	2	3	1

- Anything produced during a certain week (plus anything in inventory at the beginning of the week) may be used to satisfy demand during that week, while anything in excess of the maximum inventory level (8) at the end of the week, after demand is satisfied, is discarded)
- At the end of the 6 weeks, a salvage value of \$3 per unit remaining in inventory is recovered.
- Initially, the inventory contains 2 units.

A dynamic programming model is defined for the problem of minimizing total cost over the 6-week period. The state variable is the beginning-of-the-week inventory level. The optimal value function $f_n(S)$ is the minimum cost of satisfying the demand of the last n weeks, if current inventory level is S. Note that stages are numbered in reverse-chronological order, i.e., the first week is stage #6, and the last week is stage #1.

The table of intermediate computational results ("details") at stage 4 is:

Stage	4
-------	---

8	x:	0	1	2	з	4	5	6
_								
0	999	9.99	9999.99	9999.99	43.00	44.00	41.00	43.00
1	999	9.99	9999.99	42.00	43.00	40.00	42.00	44.00
2	999	9.99	41.00	42.00	39.00	41.00	43.00	39.00
3	3	0.00	41.00	38.00	40.0 0	p≓ A	38.00	36.00
4	3	0.00	37.00	39.00	41.00	37.00	35.00	37.00
5	2	6.00	38.00	40.00	36.00	34.00	36.00	38.00
6	2	7.00	39.00	35.00	33.00	35.00	37.00	9999.99
7	2	8.00	34.00	32.00	34.00	36.00	9999.99	9999.99
8	2	3.00	31.00	33.00	35.00	9999.99	9999.99	9999.99

The tables of optimal values & decisions at each stage are:

Stage	6:			Stage	5:		
Ŭ	Optimal	Optimal	Resulting	Ĭ	Uptimal	Optimal	Resulting
State	Values	Decisions	State	State	Values	Decisions	State
0	73.00	5	1	1 0	59.00	4	0
1	72.00	4	1	ĬĬ	53.00	ā	š
2	69.00	6	4	1 5	52.00	5	~ ~
3	68.00	5	4	1 5	52.00	4	3
4	63.00	0	0	1 3	51.00	4	5
5	58.00	Ō	1		45 00	6	5
ă	50.00	ŏ	5	4	45.00	U	U
	50.00			5	45.00	0	1
1 1	58.00	0	3	6	45.00	0	2
8	53.00	0	4	1 7	37.00	0	3
				8	38.00	Ō	4
0 1 2 3 4 5 6 7 8	73.00 72.00 69.00 68.00 58.00 58.00 58.00 58.00 53.00	5 4 5 0 0 0 0 0	1 4 4 0 1 2 3 4	0 1 2 3 4 5 6 7 8	59.00 53.00 52.00 51.00 45.00 45.00 45.00 37.00 38.00	4 5 4 6 0 0 0 0 0	0 3 3 5 0 1 2 3 4

56:171 O.R. Final Exam

	11	
nage		
page	11	

Name

	50.171		Zam		pag				
	Stage 0 1 2 3 4 [5 7 8	4: Optimal Values 41.00 39.00 30.00 30.00 B 25.00 27.00 28.00 23.00	Optimal Decisions 5 4 3 6 0 0 0 0 0 0 0 0 0 0 0 0 0	Resulting State 2 2 5 0 0 2 3 4 5	-	Stage 0 1 2 3 4 5 6 7 8	3: Optimal Values 27.00 26.00 21.00 21.00 21.00 15.00 11.00 11.00	Optimal Decisions 5 0 0 0 0 0 0 0 0 0 0 0 0	Resulting State 4 0 1 2 3 4 5 6
	Stage 0 1 2 3 4 5 6 7 8	2: Optimal Values 19.00 18.00 17.00 D 5.00 4.00 3.00 2.00 1.00	Optimal Decisions 4 3 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Resulting State 1 1 1 0 1 2 3 4 5		Stage 0 1 2 3 4 5 6 7 8	1: Optimal Values 7.00 1.00 -1.00 -3.00 -5.00 -7.00 -9.00 -11.00 -13.00	Optimal Decisions 6 0 0 0 0 0 0 0 0 0 0 0 0 0	Resulting State 5 0 1 2 3 4 5 6 7
 1. 2. 3. 4. 	The va The va The op	and the A in the a . 39 c . 41 e . 43 and b in the a . 30 c . 32 e . 34 and c . 2 e . 4 b in the a . 0 c . 2 e . 4 b in the a . 0 c . 2 b in the b in th	table above is table above is table above is	for week #1 (st	age :	b. 4(d. 42 f. no b. 31 d. 33 f. no b. 1 d. 3 f. no #6) is) 2 one of the ab 3 one of the ab	oove oove	
5. 6.	The op	a. 0 c. 4 e. 6 otimal produc a. 0 c. 4 e. 6 optimal plan a. 0 c. 4 e. 6	ction quantity f	for week #2 (st v at the beginni	age : ng o	d. 5 f. no #5) is b. 2 d. 5 f. no f the seco b. 2 d. 5 f. no	one of the ab one of the ab ond week is one of the ab	oove oove	
7.	The op	timal produc a. 0 c. 4 e. 6 tal cost of sa a. 0 c. 4 e. 6	tion quantity t	for week #6 (st	age : ne 6	 #1) is b. 2 d. 5 f. no weeks (ii) b. 2 d. 5 f. no 	one of the ab f initial inve one of the ab	ove entory is 2), is ove	