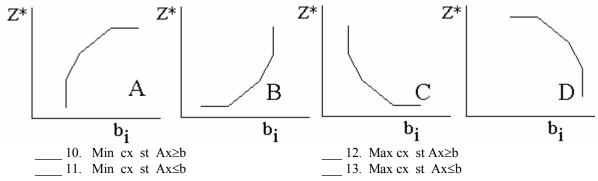
Name / Initials

56:171 Operations Research Final Examination December 18, 2001

• Write your name on the first page, and initial the other pages.


• Answer both Parts A and B, and select any 4 (out of 5) problems from Part C.

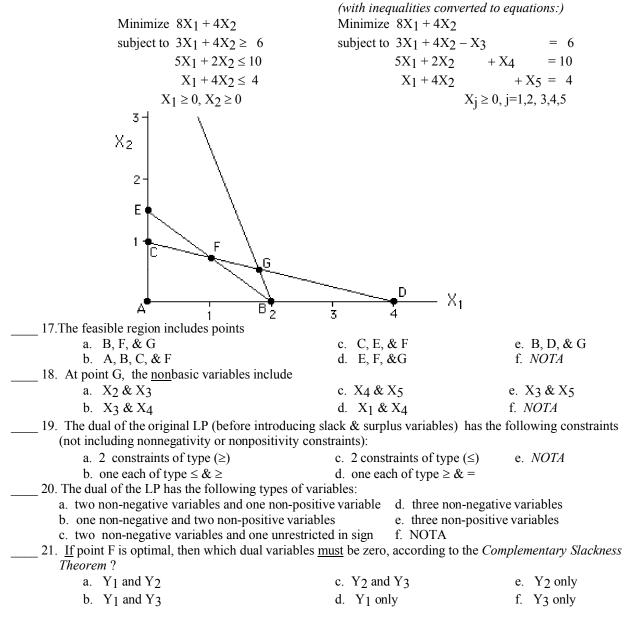
		Possible	Score
Part A:	Miscellaneous multiple choice	21	
Part B:	Sensitivity analysis (LINDO)	11	
Part C:	1. Discrete-time Markov chains I	11	
	2. Discrete-time Markov chains II	11	
	3. Continuous-time Markov chains	11	
	4. Integer Programming Models	11	
	5. Stochastic dynamic programming	<u>11</u>	
	total possible:	76	

VAVAVAV PART A VAVAVAV

<i>Multiple Choice:</i> Write the appropriate	e letter (a, b, c, d, etc.) : ($NOTA$		bove).
1. If $X_{ij} > 0$ in the optimal solution			
a. $C_{ij} > U_i + V_j$	c. $C_{ij} < U_i + V_j$		e. $C_{ij} = U_i - V_j$
b. $C_{ij} = U_i + V_j$	d. $C_{ij} + U_i + V_j = 0$	0	f. NOTA
2. For a continuous-time Markov of	chain, let Λ be the matrix of tran	nsition probabil	ities. The sum of each
a. column is 1	c. row is 1		
b. column is 0		NOTA	
3. In a birth/death process model of		partures is assur	
a. have the Beta dist'n	c. be constant		e. have the uniform dist'n
b. have the Poisson dist'n	1		f. NOTA
4. In an M/M/1 queue, if the arriva			
a. $\pi_0 = 1$ in steady state	c. $\pi_i > 0$ for all i	e. the queue	e is not a birth-death process
b. no steady state exists	d. $\pi_0 = 0$ in steady state	f. NOTA	
5. If there is a tie in the "minimum	n-ratio test" of the revised simple	ex method, the	solution in the next tableau
a. will be nonbasic	c. will have a worse objection	ve value	e. will be nonoptimal
b. will be infeasible	d. will be degenerate		f. NOTA
6. An <i>absorbing</i> state of a Markov			
a. moving out of that state is zer			
b. moving into that state is one.			
7. The number of basic variables in			
a. m×n	c. m+n+1	e. m+n-1	g. NOTA
b. m×n−1	d. n–m	f. m+n	
8. A balanced transportation probl			
a. sum of supplies = sum of den			e. NOTA
	d. $\#$ sources = $\#$ dest		
9. A transportation problem is a sp			NOT
a. sum of supplies = sum of den	hand c. supplies & deman	as all 1	e. NOTA
b. cost coefficients are all 1	d. $\#$ sources = $\#$ dest	inations	

Match the four hypothetical graphs of optimal value vs right-hand-side to the appropriate combination of min/max and inequality type, by writing the correct letter (A,B,C,D) in the blanks.

14. If, in the optimal *primal* solution of an LP problem (max cx st $Ax \ge b$, $x \ge 0$), there is *positive* slack in constraint #1, then in the optimal dual solution, where y_1 is the first dual variable,


- a. $y_1 = 0$ c. slack variable for dual constraint #1 must be zeroe. $y_1 < 0$ b. $y_1 > 0$ d. dual constraint #1 must be slackf. NOTA
- 15. If, in the optimal solution of the <u>dual</u> of the LP problem: min cx subject to: $Ax \ge b$, $x \ge 0$, dual variable y_2 is nonzero, then in the optimal *primal* solution,
 - a. variable x_2 *must* be zero
- c. slack variable for constraint #2 must be zero

b. variable x_2 *must* be positive d. slack variable for constraint #2 must be positive e. *NOTA* 16. Bayes' Rule is used to compute

a. the joint probability of a "state of nature" and the outcome of an experiment

- b. the conditional probability of a "state of nature" given the outcome of an experiment
- c. the conditional probability of the outcome of an experiment given a "state of nature"
- d. NOTA

The problems below refer to the following LP:

VAVAVAV PART B VAVAVAV

Sensitivity Analysis in LP.

Define the variables

Problem Statement: The Classic Stone Cutter Company produces four types of stone sculptures: figures, figurines, free forms, and statues. Each product requires the following hours of work for cutting and chiseling stone and polishing the final product:

Operation	FIGURES	FIGURINES	FREE FORMS	STATUES
Cutting	30	5	45	60
Chiseling	20	8	60	30
Polishing	0	20	0	120
Profit (\$/unit)	280	40	500	510

The company's current work force has production capacity sufficient to allocate 300 hours to cutting, 180 hours to chiseling, and 300 hours to polishing each week.

:FIGURES = # of figures to be produced each week,

FIGURINES = # figurines to be produced each week,

etc.

The LINDO output for solving this problem follows:

MAX		URE + 40 FIGURINE	+ 500 FREEFORM + 3	510 STAT	UE	
2	,		+ 45 FREEFORM + 60			
3	,	URE + 8 FIGURINE URINE + 120 STATU	+ 60 FREEFORM + 30	STATUE	<= 180 <= 300	
4 END) 20 F1G	URINE + 120 STATU	E.		<= 300	
		IVE FUNCTION VALUE	E			
1)	270	0.00000				
	VARIABLE	VALUE	REDUCED COST			
	FIGURE	6.000000 0.000000	0.000000 30.000000			
	FIGURINE FREEFORM	0.000000	70.000000			
	STATUE	2.000000	0.000000			
ROW	2)	LACK OR SURPLUS 0.000000	DUAL PRICES 6.000000	5		
	3)	0.000000	5.000000			
	4)	60.000000	0.000000			
	DANGER IN					
	RANGES IN	WHICH THE BASIS IS	5 UNCHANGED			
			OBJ COEFFICIENT RA	NGES		
	VARIABLE	CURRENT	ALLOWABLE		ALLOWABLE	
	FIGURE	COEF 280.000000	INCREASE 60.000000		DECREASE 9.333333	
	FIGURE	40.000000			9.333335 INFINITY	
			30.000000		TINT TINT T T	
	FREEFORM	500.000000	70.00000		INFINITY	
	FREEFORM STATUE	500.000000 510.000000			INFINITY 89.999992	
			23.333336			
ROW	STATUE					
ROW	STATUE	510.000000	23.333336 RIGHTHAND SIDE RAN		89.999992	
ROW	STATUE	510.000000 CURRENT RHS 300.000000	23.333336 RIGHTHAND SIDE RAN ALLOWABLE INCREASE 7.500000		89.999992 ALLOWABLE DECREASE 30.000000	
ROW	STATUE 2 3	510.000000 CURRENT RHS 300.000000 180.000000	23.333336 RIGHTHAND SIDE RAN ALLOWABLE INCREASE 7.500000 20.000000	NGES	89.999992 ALLOWABLE DECREASE 30.000000 5.000000	
ROW	STATUE	510.000000 CURRENT RHS 300.000000	23.333336 RIGHTHAND SIDE RAN ALLOWABLE INCREASE 7.500000 20.000000	NGES	89.999992 ALLOWABLE DECREASE 30.000000	
TH	STATUE 2 3 4 E TABLEAU	510.000000 CURRENT RHS 300.000000 180.000000 300.000000	23.333336 RIGHTHAND SIDE RAN ALLOWABLE INCREASE 7.500000 20.000000 INFINITY	NGES	89.999992 ALLOWABLE DECREASE 30.000000 5.000000 60.000000	
TH ROW	STATUE 2 3 4 E TABLEAU (BASIS) F	510.000000 CURRENT RHS 300.000000 180.000000 300.000000	23.333336 RIGHTHAND SIDE RAN ALLOWABLE INCREASE 7.500000 20.000000 INFINITY FREEFORM STATUE	NGES SLK 2	89.999992 ALLOWABLE DECREASE 30.000000 5.000000 60.000000 SLK 3 SLK 4	RHS
TH ROW 1	STATUE 2 3 4 E TABLEAU (BASIS) F ART (510.000000 CURRENT RHS 300.000000 180.000000 300.000000 'IGURE FIGURINE 0.00 30.000	23.333336 RIGHTHAND SIDE RAN ALLOWABLE INCREASE 7.500000 20.000000 INFINITY FREEFORM STATUE 70.000 0.00	NGES SLK 2 6.000	89.999992 ALLOWABLE DECREASE 30.000000 5.000000 60.000000 SLK 3 SLK 4 5.000 0.00	2700.000
TH ROW	STATUE 2 3 4 E TABLEAU (BASIS) F ART (FIGURE 2	510.000000 CURRENT RHS 300.000000 180.000000 300.000000	23.333336 RIGHTHAND SIDE RAN ALLOWABLE INCREASE 7.500000 20.000000 INFINITY FREEFORM STATUE	NGES SLK 2	89.999992 ALLOWABLE DECREASE 30.000000 5.000000 60.000000 SLK 3 SLK 4 5.000 0.00 0.200 0.00	

Ignoring the restriction that the numbers of items produced per week must be integer, answer the following questions: 1. The optimal solution above is *(check as many as apply)*: basic feasible degenerate unique 2. The number of basic variables in this optimal solution (not including z, the objective value) is c. three a. one b. two e. five f. NOTA d. four 3. In *any* basic feasible solution of this problem: a. not every product will be included b. exactly two products will be included c. at least one slack variable will be >0d. NOTA 4. If it were required to make one *freeform* as a salesman's sample, the profit will decrease by *(choose the nearest value)* d. \$75 e. \$100 a. zero b. \$25 c. \$50 f. \$125 h. cannot be determined g. \$150 i. NOTA 5. If it were required to make one *freeform* as a salesman's sample, the production of statues would c. decrease by less than 1 a. be unchanged b. increase by less than 1 g. NOTA d. decrease by more than 1 e. increase by more than 1 f. cannot be determined 6. If it were required to make one additional statue, the profit will decrease by (choose the nearest value) a. zero b. \$10 c. \$20 d.\$50 e. \$100 g. \$200 f. \$150 h. \$300 i. \$500 j. cannot be determined 7. If the profit of free forms were to be \$600 per unit, a. the profit would be unchanged b. the profit would increase by \$100 c. the production of free forms should increase d. NOTA 8. If ten additional hours of *chiseling* were available, the profit would increase by (choose the nearest value) a. ≤ \$10 b. \$10 d \$30 c. \$20 e. \$40 f. \geq \$50 g. cannot be determined 9. If ten additional hours of *chiseling* were available, the number of *figures* would a. be unchanged b. increase by 1 c. decrease by 1 d. increase by 2 e. decrease by 2 f. increase by > 2g. decrease by >2h. NOTA 10. The number of variables in the dual of this LP problem (not including variable z for objective row) is a. one b. two c. three d. four e. five f. NOTA 11. The sign restrictions on the dual variables are a. all nonnegative b. all nonpositive c. some nonpositive, some nonnegative d. no sign restrictions e. NOTA 12. The value of the second variable in the optimal dual solution a. is zero b. is positive c. is negative d. cannot be determined e. NOTA 11. The value of the optimal objective value of the dual problem is b. 2700 a. zero c. -2700 d. cannot be determined e. NOTA

FYI:

Maximize	Minimize
Type of constraint i:	Sign of variable i:
\leq	nonnegative
=	unrestricted in sign
\geq	nonpositive
Sign of variable j:	Type of constraint i:
nonnegative	\geq
unrestricted in sign	=
nonpositive	\leq

Name / Initials

VAVAVAV PART C **VAVAVAV**

1. **Discrete-Time Markov Chains I:** A XYZ is a telemarketing firm which purchases lists of potential customers, and models its contact with customers as a Discrete-time Markov chain with 6 states:

- 1. New customer with no history
- 2. During most recent call, customer's expressed interest was low
- 3. During most recent call, customer's expressed interest was medium
- 4. During most recent call, customer's expressed interest was high
- 5. Sale was completed during most recent call.
- 6. Sale was lost during most recent call (customer asked not to be contacted again!)

o. Suit	$\begin{bmatrix} 0 & 0.25 \end{bmatrix}$	-	0.15			Based on a history of past phone calls, the
	0 0.2	0.2	0.1		0.45	transition matrix to the left has been estimated,
	1	0.25				and the A and E matrices below were computed.
P =						
		0.3	0.3	0.2	0.05	Each call made by the sales representative costs
	0 0	0	0	1	0	XYZ an average of \$1, and XYZ receives \$10 for
	0 0	0	0	0	1	each sale completed.
1. The n	umber of	transi	i <i>ent</i> st	ates in	this N	Markov chain model is
a. 0		. 1	c.		d.	U
			0			Markov chain model is
a. 0		. 1	c.		d.	e
						Aarkov chain model is
a. 0		. 1	С.		d.	e
						in model are <i>(circle <u>all</u> that apply!)</i>
a. {1						$2,3,4$ d. $\{2,3,4\}$ e. $\{2\}$ f. $\{5\}$
	,2,3,4 }					
						rkov chain model are <i>(circle <u>all</u> that apply!)</i> $2 \cdot 3 \cdot 4$ $(2 \cdot 3 \cdot 4)$ $(2 \cdot 3 \cdot 4)$ $(5 \cdot 5)$
a. {1) 2 3 4 1	0. { h	4 }		$(1, \{1, 1\})$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
						to each potential customer? (choose nearest answer)
0. 110W 1		c. 2			e. 3	
b. 1.	5	d. 2			f. 3.5	0
						will eventually make a purchase? (choose nearest answer)
a. 10	-	b. 1			c. 209	
)%	h. 4				% j. 55% k. 60% l. ≥65%
Ų						expressed high interest in the product, what is the probability
						chase? (choose nearest answer)
a. 10)%	b. 1	5%		c. 209	% d. 25% e. 30% f. 35%
g. 4()%	h. 4	5%		i. 50%	% j. 55% k. 60% l. ≥65%
9. Deter						
						uting eigenvectors c. computing product of 2 matrices
						ing four matrices f. NOTA
						ist of potential customers? (That is, what is the most that
	should b			• •		
a. \$0			50.30		e. \$0.	•
b. \$(0.20	d. \$	50.40		f. \$0.	60 h. 0.80 j. 1.20 l. 21.20
<u>A 5</u>	6					E 1 2 3 4 Row Sum
1 0.352	7 0.6473	}				1 1 0.5545 0.6649 0.626 2.845
	5 0.7385					2 0 1.455 0.5887 0.5022 2.545
3 0.5147 4 0.5623						3 0 0.5455 1.887 1.022 3.455 4 0 0.5455 0.9351 1.974 3.455
1 0.0020						1 0 0.0100 0.0001 1.071 0.100

2. Discrete-time Markov Chains II: Consider an (s,S) inventory system in which the number of items on the shelf is checked at the end of each day. To avoid shortages, the current policy is to restock the shelf at the end of each day (after spare parts have been removed) so that the shelf is again filled to its limit (i.e., 6) if there are s or fewer parts on the shelf. (*That is, it is an* (s,S) *inventory system, with* S=6.) The demand is random.

The inventory system has been modeled as a Markov chain, with the state of the system defined as the end-of-day inventory level (before restocking). Refer to the computer output which follows to answer the following questions:

1. The value of s , the	<i>reorder point,</i> is		
a. zero b. one	c. two d. three	e. four f. five	g. six h. NOTA
2. the value P _{3,3} is			-
a. $P\{\text{demand}=0\}$	c. $P\{\text{demand}=1\}$	e. P{demand=2	2 g. P{demand=3}
b. $P\{\text{demand} \le 1\}$	d. P{demand \geq 1}	f. P{demand≥2	h. NOTA
$_$ 3. the value P _{0,3} is			-
a. P{demand=0}	c. P{demand=1}	e. P{demand=2	2 g. P{demand=3}
b. $P\{\text{demand} \le 1\}$		-	
$\underline{\qquad}$ 4. the value P _{6,6} is	,	C C	,
<i>,</i>	c. P{demand=1}	e. P{demand=2	2 g. P{demand=3}
b. $P\{\text{demand} \le 1\}$	d. P{demand \geq 1}	f. P{demand≥2	h. NOTA
5. If the shelf is full M	londay morning, the	expected number of	f days until a stockout
occurs is (select neare	st value):		
	c. 8		e. 12
	h. 18		
			shelf is full Thursday night
(i.e., after 4 days of sal			
a. 5% b. 6%			e. 9%
e	% h. 12%	5	
7. If the shelf is full N		probability that the	e shelf is restocked
Thursday night is (sele			
		d. 20% e	
	% h. 40%		
	•	ckout occurs Thursd	ay night, if the shelf is full
Monday morning,? (se		1 1 1 1	
a. 1% b. 2%		d. 4% e	
f. 6% g. 7%	6 h. 8%	i. 9% j	.≥10%

Transition Probability Matrix

	0	1	2	3	4	5	6
0	0.01656	0.03609	0.09022	0.1804	0.2707	0.2707	0.1353
1	0.01656	0.03609	0.09022	0.1804	0.2707	0.2707	0.1353
2	0.01656	0.03609	0.09022	0.1804	0.2707	0.2707	0.1353
3	0.01656	0.03609	0.09022	0.1804	0.2707	0.2707	0.1353
4	0.1429	0.1804	0.2707	0.2707	0.1353	0	0
5	0.05265	0.09022	0.1804	0.2707	0.2707	0.1353	0
6	0.01656	0.03609	0.09022	0.1804	0.2707	0.2707	0.1353

Steady State Distribution

	i		state		P{i}
Ι	0		SOH=zero		0.05323
	1		SOH=one		0.08033
	2		SOH=two		0.1496
	3		SOH=three		0.2183
	4		SOH=four		0.2384
	5		SOH=five		0.1816
	6		SOH=six		0.0785

First Visit Probabilities: Stage 4

0	1	2	3	4	5	6
0 0.04812	0.06725	0.1008	0.1095	0.105	0.0928	0.05493
1 0.04812	0.06725	0.1008	0.1095	0.105	0.0928	0.05493
2 0.04812	0.06725	0.1008	0.1095	0.105	0.0928	0.05493
3 0.04812	0.06725	0.1008	0.1095	0.105	0.0928	0.05493
4 0.0425	0.05846	0.08435	0.1011	0.1245	0.1228	0.0657
5 0.04651	0.06382	0.09163	0.09886	0.105	0.1091	0.06395
6 0.04812	0.06725	0.1008	0.1095	0.105	0.0928	0.05493

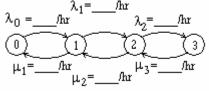
First Visit Probabilities: Stage 5

0	1	2	3	4	5	6
0 0.04536	0.06151	0.08476	0.08461	0.07658	0.07581	0.05285
1 0.04536	0.06151	0.08476	0.08461	0.07658	0.07581	0.05285
2 0.04536	0.06151	0.08476	0.08461	0.07658	0.07581	0.05285
3 0.04536	0.06151	0.08476	0.08461	0.07658	0.07581	0.05285
4 0.04048	0.05392	0.07127	0.07875	0.09079	0.09686	0.05639
5 0.04384	0.05834	0.07691	0.07617	0.07658	0.08837	0.05907
6 0.04536	0.06151	0.08476	0.08461	0.07658	0.07581	0.05285

4-th Power of P

0	1	2	3	4	5	6
0 0.05345	0.08064	0.1501	0.2188	0.2383	0.1809	0.07788
1 0.05345	0.08064	0.1501	0.2188	0.2383	0.1809	0.07788
2 0.05345	0.08064	0.1501	0.2188	0.2383	0.1809	0.07788
3 0.05345	0.08064	0.1501	0.2188	0.2383	0.1809	0.07788
4 0.0526	0.07947	0.1483	0.2172	0.2387	0.1836	0.08023
5 0.05336	0.0805	0.1499	0.2185	0.2383	0.1812	0.07821
6 0.05345	0.08064	0.1501	0.2188	0.2383	0.1809	0.07788

5-th Power of P


0	1	2	3	4	5	6
0 0.05319	0.08028	0.1495	0.2183	0.2384	0.1817	0.0786
1 0.05319	0.08028	0.1495	0.2183	0.2384	0.1817	0.0786
2 0.05319	0.08028	0.1495	0.2183	0.2384	0.1817	0.0786
3 0.05319	0.08028	0.1495	0.2183	0.2384	0.1817	0.0786
4 0.05333	0.08048	0.1498	0.2185	0.2384	0.1812	0.07819
5 0.05321	0.0803	0.1496	0.2183	0.2384	0.1816	0.07856
6 0.05319	0.08028	0.1495	0.2183	0.2384	0.1817	0.0786

Mean First Passage Time Matrix

0 1		2	3	4	5	6
0 18.79	12.45	6.683	4.58	3.695	4.851	12.74
1 18.79	12.45	6.683	4.58	3.695	4.851	12.74
2 18.79	12.45	6.683	4.58	3.695	4.851	12.74
3 18.79	12.45	6.683	4.58	3.695	4.851	12.74
4 16.84	11.01	5.748	4.303	4.195	6.008	13.9
5 18.19	11.85	6.152	4.216	3.695	5.508	14.26
6 18.79	12.45	6.683	4.58	3.695	4.851	12.74

3. Birth/Death Model of a Queue: Two mechanics work in an auto repair shop, with a maximum capacity of **3** cars, so that any cars arriving when there are already 3 in the shop are turned away. Each mechanic works individually, completing the repair of a car in an average of **4** hours (the actual time being random with exponential distribution). (If there is only one car in the shop, only one mechanic works on it, while the other takes a break.) Cars arrive randomly, according to a Poisson process, at the rate of one every **two** hours when there are no waiting cars in the shop, but one every **four** hours when both mechanics are busy. (If 3 cars are in the shop, of course, no cars will enter the shop.)

1. Complete the transition rates (in #/hr) for this system.

- 2. What is the name of the distribution of the time between arrivals when the shop is empty?
- a. Markov b. Poisson c. Uniform d. Exponential
 - e. Normal f. Weibull g. None of the above

3. Perform the computation to determine the steady-state distribution:

State i	0	1	2	3
$\pi_i =$	$1 \times \pi_0$	$_$ × π_0	$___ \times \pi_0$	$_$ × π_0
	=	=	=	=

4. The steady-state probability that the shop is empty is *(choose nearest value)*: a. 10% c. 30% b. 20% d 40% e. 50% f. 60% g. 70% h. >80% 5. In steady state, the fraction of the day that *exactly one* car will be in the shop is (choose nearest value): b. 20% a. 10% c. 30% d. 40% e. 50% f. 60% g. 70% h. >80% 6. In steady state, the average number of cars in the shop is *(choose nearest value)*: d. 2 a. 0.5 b 1 c. 1.5 e 25 f 3 The average arrival rate in steady state is approximately one every 3 hours, i.e., 0.3333/hour. 7. According to Little's Formula, the average total time spent by a car in the shop (including both waiting and repair time) is *(choose nearest value)*: b. 4.5 hours a. 4 hours c. 5 hours d. 5.5 hours e. 6 hours f. 6.5 hours g. 7 hours h. >7.5 hours 8. The Markov chain model diagrammed above is (select all that apply): a. a discrete-time Markov chain b. a Birth-Death process c. a Poisson process

d. a continuous-time Markov chainb. a Dhin Dean processd. a continuous-time Markov chaine. an M/M/2 queueg. an M/M/3 queueh. an M/M/2/3 queue

Name / Initials

4. Integer Programming Model Formulation Part I. You have been assigned to arrange the songs on the cassette version of Madonna's latest album. A cassette tape has two sides (#1 and #2). The length and type of each song are given in the table below:

Song	Туре	Length (minutes)
1	Ballad	4
2	Hit	5
3	Ballad	3
4	Ballad & Hit	2
5	Ballad	4
6	Hit	3
7	neither ballad nor hit	5
8	Ballad & hit	4

Define the variables

1 if song #i is on side 1;

0 otherwise (i.e., if on side 2)

For each restriction, choose a <u>linear</u> constraint from the list (a) through (i) below.

1. Side #2 must have at least 2 ballads

 $Y_i =$

- 2. If song #3 is on side 1, then song #5 must be on side 2
- 3. The number of hit songs on side 2 should be no more than 3
- 4. If song 3 is on side 1, then both songs 1 & 2 must be on side 2.

a. $Y_2 + Y_4 + Y_6 + Y_8 \ge 3$	b. $Y_2 + Y_4 + Y_6 + Y_8 \le 3$	c. $Y_2 + Y_4 + Y_6 + Y_8 \ge 1$	d. $Y_3 + Y_5 \le 1$
e. $Y_1 + Y_2 - 2Y_3 \le 0$	f. $Y_1 + Y_2 - Y_3 \le 2$	g. $Y_1 + Y_3 + Y_4 + Y_5 + Y_8 \le 2$	h. $Y_3 + Y_5 \ge 1$
i. $Y_1 + Y_2 - 2Y_3 \ge 0$	j. $Y_1 + Y_2 + 2Y_3 \le 2$	k. $Y_1 + Y_3 + Y_4 + Y_5 + Y_8 \le 3$	l. $Y_3 \leq Y_5$
m. $Y_3 \ge Y_5$	n. $Y_1 + Y_2 + Y_3 \le 2$	o. $Y_1 + Y_3 + Y_4 + Y_5 + Y_8 \ge 2$	p. NOTA

Part II. Compute owns four production plants at which personal computers are produced. In order to use a plant to produce computers, a fixed cost must be paid to set up the production line in that plant.

Define the variables for an *integer LP model*:

$$Y_i = 1$$
 if the production line has been set up at plant #i

0 otherwise

 $X_i = #$ of computers produced at plant #i

For each restriction, choose a constraint from the list (a) through (k) below.

- 5. Computers are to be produced at <u>no more than</u> 3 plants.
- 6. If the production line at plant 1 is set up, then that plant can produce up to 5000 computers; otherwise, none can be produced at that plant.
- 7. The production lines at plants 1 and 2 cannot <u>both</u> be set up.
- 8. The total production must be <u>at least 20,000 computers</u>.
- 9. If the production line at plant 2 is set up, that plant must produce <u>at least</u> 5000 computers.

10. If the production line at plant 1 is not set up, then the production line at plant 2 cannot be set up.

Constraints:

a. $Y_2 \le 5000X_2$	b. $Y_1 + Y_2 + Y_3 + Y_4 \le 3$	c. $Y_1 + Y_2 + Y_3 + Y_4 \ge 3$	d. $Y_1 + Y_2 \le 1$
e. $Y_2 \le 5000X_2$	f. $X_2 \ge 5000 Y_2$	g. $X_1 + X_2 + X_3 + X_4 \ge 20000$	h. $Y_1 + Y_2 \ge 1$
i. $X_2 \le 5000 Y_2$	j. $Y_2 \ge 5000X_2$	k. $Y_1 Y_2 = 0$	$l. Y_1 \le Y_2$
m. Y₁≤5000X₁	n. $X_1 + X_2 + X_3 + X_4 \le 2$	o. 5000 $X_1 Y_1 \ge 1$	p. $Y_1 \ge Y_2$
q. $Y_1 \ge 5000 X_1$	r. X₁≤5000Y₁	s. $X_1 \ge 5000 Y_1$	t. NOTA

5. Stochastic Production Planning Production must be planned for the next four weeks.

Other data:

Production cost is \$10 for setup, plus \$5 per unit produced, up to a maximum of 3 units.

Storage cost: \$1 per unit stored (based upon **beginning**-of-day stock), up to a maximum of 5 units in storage

Shortage cost: \$20 per unit short

Salvage value: \$2 per unit in stock remaining in storage Saturday night

Initial inventory: No units are in stock at the beginning of the first week.

Demand D is randomly distributed, with $P{D=0} = P{D=2} = 25\%$, $P{D=1}=50\%$

A dynamic programming model was used to compute the optimal production quantities for each week in order to minimize the expected cost. *Note that the recursion is backward, so that stage 1 is the final week, and in stage 4 there are 4 weeks remaining to be planned.*

- 1. What is the minimum expected total cost of the 4-week schedule, given **no initial inventory**?
- 2. Complete the computation of the missing element in the table for stage 1 below:

Computation:	(stora	ge) +	(shortage) +	(production)
+ 0.25×	_+ 0.5×	+0.25×	(expected rem	aining cost)

3. Complete the computation of the missing element in the table for stage 4 below: *Computation*: _____ (storage) + _____ (shortage) + _____ (production)

+
$$0.25 \times$$
 + $0.5 \times$ + $0.25 \times$ (expected remaining cost)

- 4. What is the optimal production quantity during the first week?
- 5. Suppose that during the first week, the demand is 2 units. What should then be the second week's production quanity?
- 6. If, as in (e) the first week's demand is 2, what is the optimal expected cost of the last 3 weeks of the planning period?

Stage 3---

Stage 1---

	√ x: 0				
-1	999.99	9 61.25	48.25	43.00	43.00
0	26.25	5	18.00	21.00	18.00
1	9.25	5 14.00	17.00	20.00	9.25
2	0.00	13.00	16.00	19.50	0.00
3	_1.00	12.00	15.50	20.00	-1.00
4	_2.00) 11.50	16.00	21.00	2.00

Stage 2---

s	\setminus	x: 0	1	2	3	Min
_1		999.99	71.75	62.06	54.13	54.13
0		36.75	37.06	29.13	27.06	27.06
1		23.06	25.13	23.06	25.00	23.06
2		11.13	19.06	21.00	25.25	11.13
3		5.06	17.00	21.25	26.00	5.06
4		3.00	17.25	22.00	27.00	3.00

DUC	rge					
S	\backslash	x: 0	1	2	3	Min
_1	9	999.99	82.36	72.83	66.08	66.08
0		47.36	47.83	41.08	37.59	37.59
1		33.83	37.08	33.59	32.06	32.06
2		23.08	29.59	28.06	30.52	23.08
3		15.59	24.06	26.52	31.00	15.59
4		10.06	22.52	27.00	32.00	10.06

Stage 4										
S	Ň	x:	0	1	_	2	2		3	Min
_1	9	999	.99	93.9	96	83.3	33	76.	20	76.20
0		58	.96	58.3	33	51.2	20	48.	45	48.45
1		44	.33	47.2	20	44.4	15	42.	081	42.08
2		33	.20	40.4	15	38.0	8 (38.	45	33.20
3		26	.45			34.4	15	38.	061	26.45
4		20	.08	30.4	15	34.0	6 (39.	061	20.08
										-