VAVAVAV	56:171 Operations Research	VAVAVA V
	Final Examination	
VAVAVAV	December 15, 2000	VAVAVAV

- Write your name on the first page, and initial the other pages.
- Answer both Parts A and B, and 4 (out of 5) problems from Part C.

		Possible	Score
Part A:	Miscellaneous multiple choice	17	
Part B:	Sensitivity analysis (LINDO)	16	
Part C:	1. Discrete-time Markov chains I	15	
	2. Discrete-time Markov chains II	15	
	3. Continuous-time Markov chains	15	
	4. Integer Programming Models	15	
	5. Dynamic programming	<u>15</u>	
	total possible:	90	

VAVAVAV PART A VAVAVAV

Multiple Choice: Write the appropriate letter (a, b, c, d, etc.) : (NOTA = \underline{N} one \underline{oft} he above).

- ____1. If, in the optimal primal solution of an LP problem (min cx st $A \times \ge b$, $x \ge 0$), there is positive slack in constraint #1, then in the optimal dual solution,
 - a. dual variable #1 must be zero
- c. slack variable for dual constraint #1 must be zero
- b. dual variable #1 must be positive
- d. dual constraint #1 must be slack
- _ 2. If, in the optimal solution of the *dual* of an LP problem (min cx subject to: Ax≥b, x≥0), dual variable #2 is positive, then in the optimal primal solution,
 - a. variable #2 must be zero
- c. slack variable for constraint #2 must be zero
- b. variable #2 must be positive
- d. slack variable for constraint #2 must be positive e. NOTA

 $\underline{}$ 3. If $X_{ij}>0$ in the transportation problem, then dual variables U and V must satisfy

$$\text{a. } C_{ij} > U_i + V_j$$

c.
$$C_{ij} < U_i + V_j$$

$$e. C_{ij} = U_i - V_j$$

b.
$$C_{ij} = U_i + V_j$$

$$d. C_{ij} + U_i + V_j = 0$$

- __ 4. For a discrete-time Markov chain, let P be the matrix of transition probabilities. The sum of each...
 - a. column is 1
- c. row is 1
- b. column is 0
- d. row is 0
- e. NOTA
- ____ 5. In a birth/death process model of a queue, the time between arrivals is assumed to
 - a. have the Beta distribution
- c. be constant
- b. have the Poisson distribution
- d. have the exponential distribution
- e. NOTA
- ____ 6. In an M/M/1 queue, if the arrival rate = $\lambda > \mu$ = service rate, then
 - a. $\pi_0 = 1$ in steady state
- c. $\pi_i > 0$ for all i
- e. the queue is not a birth-death process

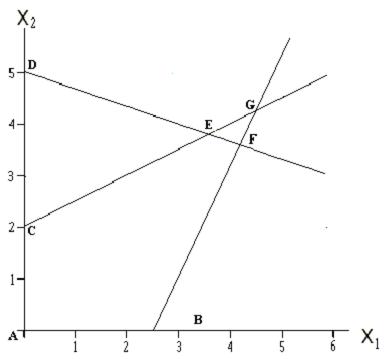
- b. no steady state exists
- d. $\pi_0 = 0$ in steady state
- f. NOTA
- ____ 7. If there is a tie in the "minimum-ratio test" of the simplex method, the solution in the next tableau
 - a. will be nonbasic

c. will have a worse objective value

a. will be nonfeasible

- d. will be degenerate e. NOTA
- __ 8. An absorbing state of a Markov chain is one in which the probability of
 - a. moving out of that state is zero b. moving into that state is one.
- c. moving out of that state is one. d. moving into that state is zero
- e. NOTA

The problems (9)-(12) below refer to the following LP:



- 9 .The feasible region includes (possibly with others) points:
 - a. E, F, & G

c. D, C, & E

e. D, E, & G

- b. G&F
- d. B&F 10. At point **F**, the basic variables include the variables

- a. X_1 , $X_2 & X_3$

- c. X2, X4 & X5
- e. X₁, X₂ & X₅

b. X₁, X₃ & X₄

- d. X₁, X₂ & X₄
- f. NOTA

f. NOTA

- 11. Which point is degenerate in the primal problem?
 - a. point A

c. point C

e. point E f. NOTA

b. point B

- d. point D
- 12. The dual of this LP has the following constraints (not including nonnegativity or nonpositivity):
- a. 2 constraints of type (\geq)
- e. one each of type $\geq \& =$

- b. 2 constraints of type (\leq)
- c. one each of type $\leq \& \geq$ d. 2 of type \leq and 1 of type \geq
- f. None of the above
- 13. The dual of the LP has the following types of variables:
- a. two non-negative variables and one non-positive variable
- d. three non-positive variables
- b. one non-negative and two non-positive variables
- e. three nonnegative variables
- f. None of the above
- c. two non-negative variables and one unrestricted in sign
- 14. If point F is optimal, then which dual variables <u>must</u> be zero, according to the *Complementary* Slackness Theorem?
 - a. Y_1 and Y_2
- c. Y₂ and Y₃
- e. Y2 only

- b. Y₁ and Y₃
- d. Y₁ only
- f. Y3 only
- 15. The number of basic variables in a solution of a transportation problem with 5 sources and 7 destinations is
- 16. A balanced transportation problem is one in which
 - a. # sources = # destinations
- c. supplies & demands all 1
- e. NOTA

- b. cost coefficients are all 1
- d. sum of supplies = sum of demand
- 17. An assignment problem is a transportation problem for which
 - a. # sources = # destinations
- c. supplies & demands all 1
- e. NOTA

- b. cost coefficients are all 1
- d. sum of supplies = sum of demand

VAVAVAV PART B VAVAVAV

Sensitivity Analysis in LP.

Consider again the LP model of PAR, Inc., which manufactures standard and deluxe golf bags:

X1 = number of**STANDARD** golf bags manufactured per quarter

X2 = number of **DELUXE** golf bags manufactured per quarter

Four operations are required, with the time per golf bag shown in the following table. Note that the values are somewhat different from the original version of the problem.

	STANDARD	DELUXE	Available
Cut-&-Dye Sew Finish Inspect-&-Pack	0.7 hr 0.5 hr 1 hr 0.1 hr	1 hr 0.8666 hr 0.6666 hr 0.25 hr	550 hrs. 600 hrs. 708 hrs. 135 hrs.
Profit (\$/bag)	\$10	\$15	

LINDO provides the following output:

10 X1 + 15 X2MAX SUBJECT TO 0.7 X1 + X2 <= 550 2) 3) 0.5 X1 + 0.8666 X2 <= 600 4) X1 + 0.6666 X2 <= 708 5) 0.1 X1 + 0.25 X2 <= 135 END

OBJECTIVE FUNCTION VALUE

1) 8233.333

VARIABLE	VALUE	REDUCED COST
X1	33.333332	0.000000
X2	526.666687	0.000000
ROW	SLACK OR SURPLUS	DUAL PRICES
2)	0.00000	13.333333
3)	126.924011	0.000000
4)	323.590668	0.000000
5)	0.00000	6.666667

RANGES IN WHICH THE BASIS IS UNCHANGED:

708.000000

135.000000

		OBJ COEFFICIENT RANGE	S
VARIABLE	CURRENT	ALLOWABLE	ALLOWABLE
	COEF	INCREASE	DECREASE
X1	10.000000	0.500000	4.000000
X2	15.000000	9.99999	0.714286
		RIGHTHAND SIDE RANGES	1
ROW	CURRENT	ALLOWABLE	ALLOWABLE
	RHS	INCREASE	DECREASE
2	550.000000	132.373184	10.000000
3	600.000000	INFINITY	126.924011
_			

4

323.590668

45.500957

INFINITY

2.500000

THE TABLEAU

ROW	(BASIS) <u>X1</u>	<u>X2</u>	SLK 2	SLK 3	SLK 4	SLK 5	RHS
1	ART	0.00	0.00	13.333	0.00	0.00	6.667	8233.333
2	X2	0.00	1.00	-1.333	0.00	0.00	9.333	526.667
3	SLK 3	0.00	0.00	-0.511	1.00	0.00	-1.422	126.924
4	SLK 4	0.00	0.00	-2.445	0.00	1.00	7.112	323.591
5	X1	1.00	0.00	3.333	0.00	0.00	-13.333	33.333

Enter the correct answer into each blank or check the correct alternative answer, as appropriate. If not sufficient information, write "NSI" in the blank:

a. If the profit on STANDARD has were to increase from \$10 each to \$12 each the number of STANDARD.

a.			RD bags were to in	crease from \$10 6	each to \$12 each, t	he number of STA	NDARD
	bags to be	produced woul	ld				
		increase	e decrease	remain the same	not sufficient	info.	
b.	If the profit	on DELUXE	bags were to decrea	ase from \$15 each	n to \$14 each, the i	number of DELUX	E bags to be
	produced v	would					
		increase	e decrease	remain the same	not sufficient	info.	
c.	The LP pro	blem above has	S				
	exactly	y one optimal s	solution	<u> </u> _	_ exactly two opting	mal solutions	
			an infinite m	umber of optimal	solutions		
d.	If an addition	onal 10 hours w	vere available in th	e cut-&-dye depa	rtment, PAR would	d be able to obtain	an
	additional	\$ in	profits.				
e.	If an addition	onal 10 hours w	vere available in th	e inspect-&-pack	department, PAR	would be able to o	btain an
	additional	\$ in	profits.				
f.	If the variab	le "SLK 5" we	ere increased, this v	vould be equivale	ent to		
	in	creasing the ho	ours used in the ins	pect-&-pack dep	artment		
	de	ecreasing the h	ours used in the in	spect-&-pack dep	artment		
		one of the abov					
g.	If the variab	ole "SLK 5" we	ere increased by 10	, X1 would	increase 🔲 decre	ase by	
	STANDA	RD golf bags/q	uarter.				
h.	If the variab	ole "SLK 5" we	ere increased by 10	, X2 would	increase 🔲 decre	ase by	DELUXE
	golf bags/c	guarter.		<u></u> -	<u> </u>		
i.	0 0	*	rmed to enter the v	ariable SLK5 int	o the basis, then ac	cording to the "mi	nimum ratio
	-		in the resulting bas			-	
	5	15	25	35	45	55	65
	10	20	30	40	50	60	70
			not suffic	cient information			
j.	If the variab	le SLK5 were	to enter the basis,	then the variable	will l	eave the basis.	

FYI:

Maximize	Minimize
Type of constraint i:	Sign of variable i:
≤	nonnegative
=.	unrestricted in sign
≥	nonpositive
Sign of variable j:	Type of constraint i:
nonnegative	≥
unrestricted in sign	=
nonpositive	≤

VAVAVAV PART C VAVAVAV

1. **Discrete-Time Markov Chains I:** The Minnesota State University admissions office has modeled the path of a student through the university as a Markov Chain:

	Freshman	Sophomore	Junior	Senior	Quits	Graduates	
Freshman	0.10	0.80	0	0	0.10	0	
Sophomore	0	0.10	0.85	0	0.05	0	
Junior	0	0	0.12	0.80	0.08	0	
Senior	0	0	0	0.10	0.05	0.85	
Quits	0	0	0	0	1.00	0	
Graduates	0	0	0	0	0	1.00	

Each student's state is observed at the *beginning of each fall semester*. For example, if a student who is a junior at the beginning of the current fall semester has an 80% chance of becoming a senior at the beginning of the next fall semester, a 15% chance of remaining a junior, and a 5% chance of quitting. (We will assume that a student who quits never re-enrolls.)

1			,							
Pow	Powers of P:									
$P^2 \setminus$	1	2	3	4	5	6				
1	0.01	0.16	0.68	0	0.15	0				
2	0	0.01	0.187	0.68	0.123	0				
3	0	0	0.0144	0.176	0.1296	0.68				
4	0	0	0	0.01	0.055	0.935				
5	0	0	0	0	1	0				
6	0	0	0	0	0	1				

P^3	\	1	2	3	4	5	6
	1	0.001	0.024	0.2176	0.544	0.213	0
	2	0	0.001	0.03094	0.2176	0.172	0.578
	3	0	0	0.00173	0.02912	0.139	0.829
	4	0	0	0	0.001	0.055	0.943
	5	0	0	0	0	1	0
	6	0	0	0	0	0	1

$P^4 \setminus$	1	2	3	4	5	6
1	0.0001	0.0032	0.0465	0.228	0.259	0.462
2	0	0.0001	0.0045	0.046	0.185	0.762
3	0	0	0.0002	0.004	0.141	0.854
4	0	0	0	0.0001	0.055	0.944
5	0	0	0	0	1	0
6	0	0	0	0	0	1

Select the **nearest** available numerical choice in answering the questions below.

- ____1. The number of *transient* states in this Markov chain model is
 - a. 0b. 1
- c. 2 d. 3
- e. 4 f. 5
- g. NOTA
- ___ 2. The number of absorbing states in this Markov chain model is
 - a. 0 b. 1
- c. 2 d. 3
- ov chair e. 4 f. 5
- g. NOTA
- ____ 3. The number of *recurrent* states in this Markov chain model is
 - a. 0b. 1
- c. 2 d. 3
- e. 4 f. 5
- g. NOTA
- 4. The closed sets of states in this Markov chain model are (circle all that apply!)
 - a. {1 } b. {2 }
- d. {4 } e. {5 }
- g. {1,2,3,4 } h. {1,2,3,4 }
- j. {2,3,4 } k. {3,4 }

- c. {3}
- f. {6}
- i. {5,6}
- 1. {1,2,3,4,5,6}
- 5. The *minimal* closed sets of states in this Markov chain model are (circle <u>all</u> that apply!)
 - a. {1 } b. {2 }
- d. {4 } e. {5 }
- g. {1,2,3,4 } h. {1,2,3,4 }
- j. {2,3,4 } k. {3,4 }

- c. {3}
- f. {6}
- i. {5,6}
- 1. {1,2,3,4,5,6}

Suppose that at the beginning of the Fall '00 semester, Joe Cool was a Freshman.

6. What is the pro	bability that Joe i	s a junior in Fall 2	002? (choose neare	est answer)	
a. 10%	c. 30%	e. 50%	g. 70%	i. 90%	
b. 20%	d. 40%	f. 60%	h. 80%	j. 100%	k. Not sufficient info.
7. What is the pro	bability that Joe i	s a senior in Fall 2	003? (choose near	est answer)	
a. 10%	c. 30%	e. 50%	g. 70%	i. 90%	
b. 20%	d. 40%	f. 60%	h. 80%	j. 100%	k. Not sufficient info
8. What is the pro	bability that Joe e	ventually graduat	es? (choose neares	t answer)	
a. 10%	c. 30%	e. 50%	g. 70%	i. 90%	
b. 20%	d. 40%	f. 60%	h. 80%	j. 100%	k. Not sufficient info
9. What is the exp	pected length of h	is academic career,	, in years? (choose	nearest answe	er)
a. 3 year	c. 4 years	e. 4.5 years	g. 5 years	i. 5.5 year	rs Not sufficient info
b. 3.75 years	d. 4.25 years	f. 4.75 years	h. 5.25 years	j. ≥5.75 y	ears
10. What fraction	of students gradu	ate in exactly four	years? (choose nea	arest answer)	
a. ≤25%	c. 35% e. 45%	g. 55% i.	65% k. 75%	m. 85% o	. Not sufficient info
b. 30%	d. 40% f. 50%	h. 60% i.	70% 1. 80%	n. ≥90%	

2. Discrete-time Markov Chains II:

Consider an (s,S) inventory system in which the number of items on the shelf is checked at the end of each day. The demand distribution is as follows:

n=	0	1	2
$P\{D=n\}$	0.2	0.5	0.3

To avoid shortages, the current policy is to restock the shelf at the end of each day (after spare parts have been removed) so that the shelf is again filled to its limit (i.e., 4) if there are fewer than 2 parts on the shelf. (That is, it is an (s,S) inventory system, with s=2 and S=4.)

The inventory system has been modeled as a Markov chain, with the state of the system defined as the end-of-day inventory level (before restocking). Refer to the computer output which follows to answer the following questions:

\ 0 1 2 3 4	\ 0	1	2	3	4
0 0 0 0.3 0.5 0.2	0 0.0909	0.228	0.3207	0.272	0.0884
1 0 0 0.3 0.5 0.2	1 0.0909	0.228	0.3207	0.272	0.0884
2 0.3 0.5 0.2 0 0	2 0.1056	0.248	0.3128	0.252	0.0816
3 0 0.3 0.5 0.2 0	3 0.0927	0.2439	0.3287	0.2561	0.0786
4 0 0 0.3 0.5 0.2	4 0.0909	0.228	0.3207	0.272	0.0884
$P^2 =$	$P^5 =$				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	_\ 0	1	2	3	4
0 0.09 0.3 0.37 0.2 0.04	0 0.0962	0.2419	0.3223	0.2580	0.0814
1 0.09 0.3 0.37 0.2 0.04	1 0.0962	0.2419	0.3223	0.2580	0.0814
2 0.06 0.1 0.28 0.4 0.16	2 0.0938	0.2320	0.3191	0.2680	0.0870
3 0.15 0.31 0.29 0.19 0.06	3 0.0986	0.2412	0.3183	0.2588	0.0830
4 0.09 0.3 0.37 0.2 0.04	4 0.0962	0.2419	0.3223	0.2580	0.0814
$p^3 =$	5				
0 1 2 3 4	$\sum_{n}^{\infty} D^{n}$				
0 0.111 0.245 0.303 0.255 0.086	$\sum_{i} I =$				
1 0.111 0.245 0.303 0.255 0.086	n=1	1	· ·	2 4	
2 0.084 0.26 0.352 0.24 0.064	/ 0	1 01F 1		3 4 405 0 4) F
3 0.087 0.202 0.309 0.298 0.104	0 0.388				
4 0.111 0.245 0.303 0.255 0.086	1 0.388				
•	2 0.643				
	3 0.428	⊥.∠9/ ⊥	./4b l.2	ZUZ U.3.	4 5

4 0.388 1.015 1.616 1.485 0.495

First Passage Probabilities $f_{4,0}^{(n)}$ n 1 0.0 0.09 2 3 0.111 0.0828

```
2 | 7.755 2.822 3.122 4
         3.014 2.245 3.83 13.984
4 | 10.408 4.192 2.653 2.75 11.953
```

Steady State Distribution

		5	0.0	7623		i	name	πi
						0	SOH 0	0.09607
Me	an Firs	st Pass	sage Ti	mes		1	SOH 1	0.23856
						2	SOH 2	0.32026
\	0		2	3	4	3	SOH 3	0.26144
0	10.408	4.192	2.653	2.75	11.953	4	SOH 4	0.08366
1	10.408	4.192	2.653	2.75	11.953			

1. the value $P_{4,2}$ is

a. P{demand=0} d. P{demand≤1}

- b. P{demand=1} e. P{demand≥1}
- c. P{demand=2} f. none of the above

- 2. the value $P_{0.3}$ is
 - a. P{demand=0} d. P{demand≤1}
- b. P{demand=1} e. P{demand≥1}
- c. P{demand=2}

- 3. the value $P_{2,0}$ is
 - a. P{demand=0}
- b. P{demand=1}
- c. P{demand=2}

- d. $P\{demand \le 1\}$
- e. P{demand≥1}
- f. none of the above

f. none of the above

- 4. If the shelf is full Monday morning, the expected number of days until astockout occurs is (select nearest value):
 - a. 2.5
- b. 5 g. 17.5
- c. 7.5 h. 20
- d. 10

f. 15

- i. more than 20
- 5. If the shelf is full Monday morning, the probability that the shelf is full Thursday night (i.e., after 4 days of sales) is (select nearest value):
 - a. 5% f. 10%
- b. 6% g. 11%
- c. 7% h. 12%
- d. 8% i. 13%
- e. 9% j. ≥14%

e. 12.5

- 6. If the shelf is full Monday morning, the probability that the shelf is restocked Thursday night is (select nearest value):
- a. 5%
- b. 10%
- c. 15%
- d. 20%
- e. 25%

- f. 30%
- g. 35%
- h. 40%
- i. 45%
- j. ≥50%
- 7. If the shelf is full Monday morning, the *expected* number of nights that the shelf is restocked during the next five nights is (select nearest value):
 - a. 0.25
- b. 0.5
- c. 0.75 h. 2
- d. 1 i. 2.25
- e. 1.25 j. ≥2.5
- f. 1.5 g. 1.75 8. How frequently will the shelf be restocked? (select nearest value): once every _____ days
- a. 0.5 days
- b. 1 days
- c. 1.5 days
- d. 2 days
- e. 2.5 days

- f. 3 days
- g. 3.5 days
- h. 4 days
- i. 4.5 days
- j. ≥5 days
- 9. What is the probability of a stockout Thursday night, if the shelf is full Monday morning,? (select nearest value):
 - a. 5% f. 10%
- b. 6% g. 11%
- c. 7% h. 12%
- d. 8% i. 13%
- e. 9% j. ≥14%
- 10. Circle one or more of the following equations which are among those solved to compute the steady state probability distribution:

a.
$$\mathbf{p}_0 = 0.3\mathbf{p}_2$$

$$\mathbf{p}_{2} = 0.3\mathbf{p}_{2} + 0.5\mathbf{p}_{1} + 0.2\mathbf{p}_{2}$$

c.
$$\mathbf{p}_3 = 0.3\mathbf{p}_0 + 0.5\mathbf{p}_1 + 0.2\mathbf{p}_2$$

b.
$$\boldsymbol{p}_4 = 0.2\boldsymbol{p}_2 + 0.5\boldsymbol{p}_3 + 0.3\boldsymbol{p}_4$$

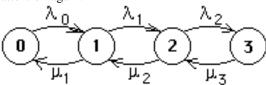
d.
$$\mathbf{p}_2 = 0.3\mathbf{p}_0 + 0.3\mathbf{p}_1 + 0.2\mathbf{p}_2 + 0.5\mathbf{p}_3 + 0.3\mathbf{p}_4$$

e.
$$\mathbf{p}_4 = 0.3\mathbf{p}_2 + 0.5\mathbf{p}_3 + 0.2\mathbf{p}_4$$

f.
$$\mathbf{p}_0 + \mathbf{p}_1 + \mathbf{p}_2 + \mathbf{p}_3 + \mathbf{p}_4 = 1$$

3. Birth/Death Model of a Queue:

A machine operator has sole responsibility for keeping three semi-automatic machines busy. The time required to ready a machine (unloading & reloading) has exponential distribution with mean 15 minutes. The machine will then run unattended for an average of 1 hour (but with actual time having exponential distribution) before it requires the operator's attention again.



- 1. The Markov chain model diagrammed above is (select one or more):
- a. a discrete-time Markov chain b. a continuous-time Markov chain c. a Poisson process
- d. a Birth-Death process
 e. an M/M/1 queue
 f. an M/M/1/3/3 queue
- g. an M/M/3 queue h. an M/M/1/3 queue
- g. an M/M/3 queue h. an M/M/1/3 queue 2. The value of λ_2 is
- a. 1/hr. b. 2/hr. c. 3/hr d. 4/hr
- e. 0.25/hr.
 f. 0.5/hr.
 g. none of the above
 3. The value of μ₂ is
 - a. 1/hr. b. 2/hr. c. 3/hr d. 4/hr e. 0.25/hr. f. 0.5/hr. g. none of the above
- e. 0.25/hr. f. 0.5/hr. g. none of the above 4. The value of λ_0 is
 - a. 1/hr. b. 2/hr. c. 3/hr d. 4/hr
 - e. 0.25/hr. f. 0.5/hr. g. none of the above
 - 5. The steady-state probability π_0 is computed by solving

a.
$$\frac{1}{\pi_0} = 1 + \frac{3}{4} + \left(\frac{3}{4}\right)^2 + \left(\frac{3}{4}\right)^3 \approx \frac{1}{0.366}$$
 b. $\frac{1}{\pi_0} = 1 + \frac{3}{4} + \frac{1}{2} \times \frac{3}{4} + \frac{1}{4} \times \frac{1}{2} \times \frac{3}{4} \approx \frac{1}{0.451}$ c. $\frac{1}{\pi_0} = 1 + \frac{3}{4} + \frac{1}{2} + \frac{1}{4} \approx \frac{1}{0.4}$ d. $\frac{1}{\pi_0} = 1 + \frac{1}{4} + \left(\frac{1}{4}\right)^2 + \left(\frac{1}{4}\right)^3 \approx \frac{1}{0.753}$ e. $\frac{1}{\pi_0} = 1 + \frac{3}{4} + \left(\frac{1}{2}\right)^2 + \left(\frac{1}{4}\right)^3 \approx \frac{1}{0.496}$ f. none of the above

- 6. The operator will be busy what fraction of the time? (choose nearest value)
- a. 40% b. 45% c. 50% d. 55% e. 60% f. 65% g. 70% h. ≥75%
- e. 60% f. 65% g. 70% h. ≥75%

 7. What fraction of the time will the operator be busy but with no machine waiting to be serviced?

 (choose pearest value)
- (choose nearest value)

 a. 10%

 b. 20%

 c. 30%

 d. 40%
 - a. 10% b. 20% c. 30% d. 40% e. 50% f. 60% g. 70% h. ≥80%
- 8. Approximately 2.2 machines per hour require the operator's attention. What is the average length of time that a machine <u>waits</u> before the operator begins to ready the machine for the next job? (*select nearest value*)
 - a. 0.1 hr. (i.e.,6 min.)
 b. 0.15 hr. (i.e., 9 min.)
 c. 0.2 hr. (i.e., 12 min.)
 d. 0.25 hr. (i.e., 15 min.)
 e. 0.3 hr. (i.e., 18 min.)
 f. greater than 0.33 hr. (i.e., >20 min.)
- 9. What will be the utilization of this group of 3 machines? (choose nearest value)
- a. 60% b. 65% c. 70% d. 75% e. 80% f. 85% g. 90% h. ≥95%

4. Integer Programming Model Formulation Part I. You have been assigned to arrange the songs on the cassette version of Madonna's latest album. A cassette tape has two sides (#1 and #2). The length and type of each song are given in the table below:

Song	Type	Length (minutes)
1	Ballad	4
2	Hit	5
3	Ballad	3
4	Ballad & Hit	2

5	Ballad	4
6	Hit	3
7	neither ballad nor hit	5
8	Ballad & hit	4

Define the variables

Thus,

 $Y_i =$ 1 if song #i is on side 1; 0 otherwise (i.e., if on side 2) $1-Y_i = 1$ if song #i is on side 2;

For each restriction, choose a linear constraint from the list (a) through (i) below.

0 otherwise (i.e., if on side 1)

- ___ 1. Side #2 must have at least 3 ballads
- ___ 2. Side #1 must have at least 2 hit songs
- ____ 3. If song #2 is on side 1, then song #3 must be on side 2
- 4. The number of hit songs on side 2 should be no more than 2
- 5. If both songs 1 & 2 are on side 1, then song 3 must be on side 2.

a.
$$Y_2 + Y_4 + Y_6 + Y_8 \ge 3$$

b.
$$Y_2 + Y_4 + Y_6 + Y_8 \le 2$$

c.
$$Y_2 + Y_4 + Y_6 + Y_8 \ge 2$$

1.
$$Y_2 + Y_3 \le 1$$

e.
$$Y_1 + Y_2 - Y_3 \le 2$$

f.
$$Y_1 + Y_2 + Y_3 \le 2$$

$$\mathbf{n.} \ \mathbf{Y}_2 + \mathbf{Y}_3 \ge 1$$

i.
$$Y_1 + Y_2 - Y_3 \ge 2$$

j.
$$Y_1 + Y_2 + Y_3 \le 1$$

1.
$$Y_1 + Y_3 + Y_4 + Y_5 + Y_8 \le 3$$
 1. N

Part II. Comquat owns four production plants at which personal computers are produced. In order to use a plant to produce computers, a fixed cost must be paid to set up the production line in that plant.

Define the variables:

 $Y_i =$ 1 if the production line has been set up at plant #i

0 otherwise

 $X_i = \#$ of computers produced at plant #i

For each restriction, choose a constraint from the list (a) through (k) below.

- ____ 7. Computers are to be produced at <u>no more than</u> 3 plants.
- 8. If the production line at plant 2 is set up, then that plant can produce up to 8000 computers; otherwise, none can be produced at that plant.
- ____ 9. The production lines at plants 2 and 3 cannot <u>both</u> be set up.
- ____ 10. The total production must be <u>at least 20,000</u> computers.
- ____ 11. If the production line at plant 2 is set up, that plant must produce at least 2000 computers.
- ___ 12. If the production line at plant 2 is not set up, then the production line at plant 3 cannot be set up.

Constraints:

a.
$$Y_2 \le 8000X_2$$

b.
$$Y_1 + Y_2 + Y_3 + Y_4 \le$$

d.
$$Y_2+Y_3 \le 1$$

h. $Y_2+Y_3 \ge 1$

$$i X_2 < 8000 Y_2$$

$$i \quad Y_2 < Y_2$$

$$k V_2 > V_2$$

Name or Initials		
maine oi iiillais		

5. Deterministic Production Planning Production must be planned for each day of the next week (Sunday through Saturday). The following shipments have been planned for each day:

Day	Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
Required	1	3	1	4	2	2	1

Other data:

Production cost is \$3 for setup, plus \$1 per unit produced, up to a maximum of 3 units.

Storage cost: \$1 per unit stored (based upon **beginning**-of-day stock), up to a maximum of 5 units in storage

Salvage value: \$2 per unit in stock remaining in storage Saturday night

Initial inventory: 2 units are in stock Sunday morning.

A dynamic programming model was used to compute the optimal production quantities for each day in order to meet the shipment schedule.

The stages were numbered in a **backward** fashion, i.e., n= 7(Sunday), 6(Monday), ... 1(Saturday).

Several values have been blanked in the tables of computations-- compute them:

A =	= cost of last day (Sat	turday) if stock is zero	and 1 is produced.

B = _____ = cost of Thursday through Saturday if on Thursday morning, 2 are in stock and 2 are produced.

C = _____ = minimal cost of Wednesday through Saturday if 4 are in stock

D = _____ = optimal production quantity on Wednesday if 4 are in stock

E = = resulting stock on Thursday if 4 are in stock Wednesday & optimal quantity is produced

What is the minimum total cost of the schedule?

Complete the table below with the inventory levels and production quantities if the optimal schedule is used.

Day	SUN	MON	TUES	WED	THURS	FRI	SAT	final value
Inventory	2							
Prod'n qty								

◇◇◇◇◇◇◇◇◇◇◇◇◇◇

Sta	age 1 (S	aturda	v)		Stage 7 (Sunday)
	x:0	1	2	3	Optimal Optimal Resulting
0	9999	_A_	3	2	State Values Decisions State
1	1	3	2	1	2 32 0 1
2	0	2	1	0	<><><><><><>
3	-1	1	0	-1	Stage 6 (Monday):
4	<u>-</u> 2	0	-1	9999	Optimal Optimal Resulting
5	-2	-1	9999	9999	State Values Decisions State
J	-3	-1	2222	2222	0 30 3 0
α - .	age 2 (F	7			1 30 2 0
	age z (r \ x:0	riday) 1	2	2	2 29 3 2
		9999	7	<u>3</u> 7	3 27 0 0
0 1	9999				4 28 0 1
	9999	7	7	7	5 26 0 2
2	4	7	7	7	5
3	4	7	7	7	
4	4	7	7	7	Stage 5 (Tuesday):
5	4	7	7	9999	Optimal Optimal Resulting
					State Values Decisions State
Sta	age 3 (T	'hursda	X)		0 24 2 1
s \	\ x:0	1	2	3	1 24 1 1
0	9999	9999	12	13	2 21 0 1
1	9999	12	13	11	3 22 0 2
2	9	13	_B_	12	4 22 0 3
3	10	11	12	13	5 21 0 4
4	8	12	13	14	<><><><><>
5	9	13	14	9999	Stage 4 (Wednesday):
_	-				Optimal Optimal Resulting
Sta	age 4 (W	lednesd	av)		State Values Decisions State
s \	x:0	1	2	3	1 19 3 0
1	9999	9999	9999	<u></u> 19	2 19 2 0
2	9999	9999	19	19	3 18 3 2
3	9999	19	19	18	4 C D E
	9999 16			20	5 16 0 1
4 5	16 16	19 18	18 20	19	<><><><><>
5	1 10	10	20	19	Stage 3 (Thursday):
Q+.			. \		Optimal Optimal Resulting
	age 5 (T			2	
s \	\ x:0	1	2	3	State Values Decisions State 0 12 2 0
0	9999	9999	24	25	
1	9999	24	25	25	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
2	21	25	25	24	
3	22	25	24	25	3 10 0 1
4	22	24	25	9999	4 8 0 2
5	21	25	9999	9999	5 9 0 3
					<><><><><><><>
Sta	age 6 (M	(Ionday			Stage 2 (Friday):
s \	\ x:0	1	2	3	Optimal Optimal Resulting
0	9999	9999	9999	30	State Values Decisions State
1	9999	9999	30	31	0 7 2 0
2	9999	30	31	29	1 7 1 0
3	27	31	29	31	2 4 0 0
4	28	29	31	32	3 4 0 1
5	26	31	32	32	$4 \qquad 4 \qquad 0 \qquad \qquad 2$
J					5 4 0 3
Sta	age 7	-			<><><><><>
	_	1	2	3	Stage 1 (Saturday):
2	32	35	34	<u></u> 36	Optimal Optimal Resulting
<><><>) ><><><				
~~~~			\ / / /		0 2 3 2
					1 1 0 0
					$\begin{array}{cccccccccccccccccccccccccccccccccccc$
					3 -1 0 2

-2

-3