56:171 Operations Research Quiz \#9 - November 8, 2002

Markov Chains. Consider the discrete-time Markov chain diagrammed below:

A	3	4
1	0.518	0.482
2	0.407	0.593

E	1	2	row sum
1	1.851	1.482	3.333
2	0.741	2.592	3.333

n	$f_{13}^{(n)}$	$f_{14}^{(n)}$
1	0.2	0.1
2	0.1	0.11
3	0.066	0.081
4	0.0458	0.0571
5	0.03202	0.04001
6	0.02241	0.028011
7	0.0156866	0.0196081
8	0.0109806	0.0137257
9	0.0076864	0.009608
10	0.00538048	0.0067256

b 1. Which is the matrix Q (used in computation of E)?
a. $\left[\begin{array}{ll}0.2 & 0.1 \\ 0.1 & 0.2\end{array}\right]$
b. $\left[\begin{array}{ll}0.3 & 0.4 \\ 0.2 & 0.5\end{array}\right]$
c. $\left[\begin{array}{llll}0.3 & 0.4 & 0.2 & 0.1 \\ 0.2 & 0.5 & 0.1 & 0.2\end{array}\right]$
d. $\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$
e. $\left[\begin{array}{llll}0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1\end{array}\right]$
f. None of the above (NOTA)
a 2. Which is the matrix R (used in computation of A)?
a. $\left[\begin{array}{ll}0.2 & 0.1 \\ 0.1 & 0.2\end{array}\right]$
b. $\left[\begin{array}{ll}0.3 & 0.4 \\ 0.2 & 0.5\end{array}\right]$
c. $\left[\begin{array}{llll}0.3 & 0.4 & 0.2 & 0.1 \\ 0.2 & 0.5 & 0.1 & 0.2\end{array}\right]$
d. $\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$
e. $\left[\begin{array}{llll}0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1\end{array}\right]$
f. NOTA
e 3. If the system begins in state \#1, what is the probability that it is absorbed into state \#4? (Choose nearest value)
a. 30% or less
b. 35%
c. 40%
d. 45%
e. 50%
f. 55%
g. 60%
h. 65% or more
_c 4. If the system begins in state \#1, what is the expected number of stages (including the initial stage) that the system exists before it is absorbed into one of the two absorbing states? (Choose nearest value)
a. 1
b. 2
c. 3
d. 4
e. 5
f. 6
g. 7
h. 8 or more
\qquad 5. For a discrete-time Markov chain, let P be the matrix of transition probabilities. The sum of each...
a. column is 1
c. row is 1
b. column is 0
d. row is 0
e. NOTA
___ 6. An absorbing state of a Markov chain is one in which the probability of
a. moving out of that state is zero
c. moving out of that state is one.
b. moving into that state is one.
d. moving into that state is zero
e. NOTA
_ g_ 7. The minimal closed set(s) in the above Markov chain =
a. $\{1,2,3,4\}$
b. $\{1,2\}$
c. $\{3.4\}$
d. $\{1,2,3,4\} \&\{3,4\}$
e. $\{1\} \&\{2\}$
f. $\{1,2\} \&\{3,4\}$
g. $\{3\} \&\{4\}$
h. NOTA
_h 8. The probability that the system reaches an absorbing state, beginning in state 1 , is (choose nearest value):
a. 0.3
b. 0.4
c. 0.5
d. 0.6
e. 0.7
f. 0.8
g. 0.9
h. 1.0
__ b 9. The recurrent state(s) in the above Markov chain =
a. $1 \& 2$
b. $3 \& 4$
c. $1,2,3, \& 4$
d. NOTA
a 10. The transient state(s) in the above Markov chain $=$
a. $1 \& 2$
b. $3 \& 4$
c. $1,2,3, \& 4$
d. NOTA
e 11. The quantity $f{13}^{(4)}$ is
a. the probability that the system, beginning in state 1 , is in state 3 at stage n
b. the probability that the system first visits state 3 before state 4 .
c. the expected number of visits to state 3 during the first 4 stages, beginning in state 1
d. the stage in which the system, beginning in state 1 , visits state 3 for the fourth time
e. the probability that the system, beginning in state 1 , first reaches state 3 in stage 4
f. NOTA
\qquad 12. From which state is the system more likely to eventually reach state 4 ?
a. 1
b. 2
c. equally likely
d. NOTA
g 13. What is the probability that the system is absorbed into state 4 , starting in state 1 , if the first transition is to state 2? (choose nearest value)
a. 30% or less
b. 35%
c. 40%
d. 45%
e. 50%
f. 55%
g. 60%
h. 65% or more
___ 14. The probability that the system, starting in state 1 , is in state 1 after 2 stages? (choose nearest value)
a. 5% or less
b. 10%
c. 15%
d. 20%
e. 25%
f. 30%
g. 35%
h. 40% or more
__c_15. The probability that the system, starting in state 1 , is in state 4 after 3 stages? (choose nearest value)
a. 5% or less
a. 0.1
b. 10%
b. 0.2
c. 15%
c. 0.3
d. 20%
d. 0.4
e. 25%
e. 0.5
f. 30%
f. 0.6
g. 35%
g. 0.7
h. 40% or more
h. 0.8
d_ 16. In general, the steadystate probability distribution π (if it exists) must satisfy
a. $\mathrm{P} \pi=0$
b. $\mathrm{P} \pi=1$
c. $\pi \mathrm{P}=1$
d. $\pi \mathrm{P}=\pi$
e. $\mathrm{P} \pi=\pi$
f. $\pi \mathrm{P}=0$
g. NOTA

56:171 Operations Research Quiz \#9 - November 8, 2002

Markov Chains. Consider the discrete-time Markov chain diagrammed below:

A	3	4
1	0.542	0.458
2	0.417	0.583

E	1	2	row sum
1	2.083	1.25	3.333
2	0.833	2.5	3.333

	${ }^{(n)}$	$f_{14}^{(n)}$
n	$f_{13}^{(n)}$	0.1
1	0.2	0.1
2	0.11	0.076
3	0.071	0.0544
4	0.0485	0.03832
5	0.03371	0.026872
6	0.023549	0.01882
7	0.0164747	0.0131759
8	0.0115304	0.015
9	0.00807088	0.00922353
10	0.00564954	0.00645655

1. Which is the matrix R (used in computation of A)?
a. $\left[\begin{array}{ll}0.2 & 0.1 \\ 0.1 & 0.2\end{array}\right]$
b. $\left[\begin{array}{ll}0.4 & 0.3 \\ 0.2 & 0.5\end{array}\right]$
c. $\left[\begin{array}{llll}0.4 & 0.3 & 0.2 & 0.1 \\ 0.2 & 0.5 & 0.1 & 0.2\end{array}\right]$
d. $\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$
e. $\left[\begin{array}{llll}0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1\end{array}\right]$
f. None of the above (NOTA)
b 2. Which is the matrix Q (used in computation of E)?
a. $\left[\begin{array}{ll}0.2 & 0.1 \\ 0.1 & 0.2\end{array}\right]$
b. $\left[\begin{array}{ll}0.4 & 0.3 \\ 0.2 & 0.5\end{array}\right]$
c. $\left[\begin{array}{llll}0.4 & 0.3 & 0.2 & 0.1 \\ 0.2 & 0.5 & 0.1 & 0.2\end{array}\right]$
d. $\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$
e. $\left[\begin{array}{llll}0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1\end{array}\right]$
f. None of the above (NOTA)
d 3. If the system begins in state \#1, what is the probability that it is absorbed into state \#4? (Choose nearest value)
a. 30% or less
b. 35%
c. 40%
d. 45%
e. 50%
f. 55%
g. 60%
h. 65% or more
c 4. If the system begins in state \#1, what is the expected number of stages (including the initial stage) that the system exists before it is absorbed into one of the two absorbing states? (Choose nearest value)
a. 1
b. 2
c. 3
d. 4
e. 5
f. 6
g. 7
h. 8 or more
b 5. For a discrete-time Markov chain, let P be the matrix of transition probabilities. The sum of each...
a. column is 1
b. row is 1
c. column is 0
d. row is 0
e. NOTA
__d_6. An absorbing state of a Markov chain is one in which the probability of
a. moving into that state is zero
b. moving out of that state is one.
c. moving into that state is one.
d. moving out of that state is zero
e. NOTA
c_ 7. The minimal closed set(s) in the above Markov chain $=$
a. $\{1,2,3,4\}$
b. $\{1,2\}$
c. $\{3\} \&\{4\}$
d. $\{1,2,3,4\} \&\{3,4\}$
e. $\{1\} \&\{2\}$
f. $\{1,2\} \&\{3,4\}$
g. $\{3.4\}$
h. NOTA
__h_ 8. The probability that the system reaches an absorbing state, beginning in state 1 , is (choose nearest value):
a. 0.3
b. 0.4
c. 0.5
d. 0.6
e. 0.7
f. 0.8
g. 0.9
h. 1.0
__ a_ 9. The transient state(s) in the above Markov chain =
a. $1 \& 2$
b. $3 \& 4$
c. $1,2,3, \& 4$
d. NOTA
b 10. The recurrent state(s) in the above Markov chain $=$
a. $1 \& 2$
b. $3 \& 4$
c. $1,2,3, \& 4$
d. NOTA
a 11. The quantity $f_{13}^{(4)}$ is
a. the probability that the system, beginning in state 1 , first reaches state 3 in stage 4
b. the probability that the system, beginning in state 1 , is in state 3 at stage 4
c. the expected number of visits to state 3 during the first 4 stages, beginning in state 1
d. the probability that the system first visits state 3 before state 4 .
e. the stage in which the system, beginning in state 1 , visits state 3 for the fourth time
f. NOTA
__ b 12. From which state is the system more likely to eventually reach state 4 ?
a. 1
b. 2
c. equally likely
d. NOTA
c 13. What is the probability that the system is absorbed into state 3 , starting in state 1 , if the first transition is to state 2? (choose nearest value)
a. 30% or less
b. 35%
c. 40%
d. 45%
e. 50%
f. 55%
g. 60%
h. 65% or more
__b_ 14. The probability that the system, starting in state 1 , is in state 1 after 2 stages? (choose nearest value)
a. 5% or less
b. 10%
c. 15%
d. 20%
e. 25%
f. 30%
g. 35%
h. 40% or more
_f 15. The probability that the system, starting in state 1 , is in state 4 after 3 stages? (choose nearest value)
a. 5% or less
b. 10%
c. 15%
d. 20%
e. 25%
f. 30%
g. 35%
h. 40% or more
_e 16. In general, the steadystate probability distribution π (if it exists) must satisfy
a. $\mathrm{P} \pi=0$
b. $\mathrm{P} \pi=1$
c. $\pi \mathrm{P}=1$
d. $\mathrm{P} \pi=\pi$
e. $\pi \mathrm{P}=\pi$
f. $\pi \mathrm{P}=0$
g. NOTA

56:171 Operations Research Quiz \#9 - November 8, 2002

Markov Chains. Consider the discrete-time Markov chain diagrammed below:

A	3	4
1	0.611	0.389
2	0.444	0.556

E	1	2	row sum
1	2.778	0.555	3.333
2	1.111	2.222	3.333

	${ }^{(n)}$	$f_{14}^{(n)}$
1	0.2	0.1
2	0.13	0.08
3	0.087	0.06
4	0.0593	0.0436
5	0.04087	0.03116
6	0.028353	0.022068
7	0.0197447	0.01555
8	0.0137803	0.010926
9	0.00962985	0.00766456
10	0.00673434	0.00537174

b 1. Which is the matrix Q (used in computation of E)?
a. $\left[\begin{array}{ll}0.2 & 0.1 \\ 0.1 & 0.2\end{array}\right]$
b. $\left[\begin{array}{ll}0.6 & 0.1 \\ 0.2 & 0.5\end{array}\right]$
c. $\left[\begin{array}{llll}0.6 & 0.1 & 0.2 & 0.1 \\ 0.2 & 0.5 & 0.1 & 0.2\end{array}\right]$
d. $\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$
e. $\left[\begin{array}{llll}0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1\end{array}\right]$
f. None of the above (NOTA)
_-
2. Which is the matrix R (used in computation of A)?
a. $\left[\begin{array}{ll}0.2 & 0.1 \\ 0.1 & 0.2\end{array}\right]$
b. $\left[\begin{array}{ll}0.6 & 0.1 \\ 0.2 & 0.5\end{array}\right]$
c. $\left[\begin{array}{llll}0.6 & 0.1 & 0.2 & 0.1 \\ 0.2 & 0.5 & 0.1 & 0.2\end{array}\right]$
d. $\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$
e. $\left[\begin{array}{llll}0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1\end{array}\right]$
f. None of the above (NOTA)
c 3. If the system begins in state \#1, what is the probability that it is absorbed into state \#4? (Choose nearest value)
a. 30% or less
b. 35%
c. 40%
d. 45%
e. 50%
f. 55%
g. 60%
h. 65% or more
__ 4. If the system begins in state \#1, what is the expected number of stages (including the initial stage) that the system exists before it is absorbed into one of the two absorbing states? (Choose nearest value)
a. 1
b. 2
c. 3
d. 4
e. 5
f. 6
g. 7
h. 8 or more
c 5. For a discrete-time Markov chain, let P be the matrix of transition probabilities. The sum of each...
a. column is 1
c. row is 1
b. column is 0
d. row is 0
e. NOTA

Version C--SOLUTION

__c_6. An absorbing state of a Markov chain is one in which the probability of
a. moving out of that state is one
c. moving out of that state is zero.
b. moving into that state is one.
d. moving into that state is zero
e. NOTA
_ e 7. The minimal closed set(s) in the above Markov chain $=$
a. $\{1,2,3,4\}$
c. $\{1,2\}$
e. $\{3\} \&\{4\}$
g. $\{1,2,3,4\} \&\{3,4\}$
b. $\{1\} \&\{2\}$
d. $\{1,2\} \&\{3,4\}$
f. $\{3.4\}$
h. NOTA
b 8. The recurrent state(s) in the above Markov chain $=$
a. $1 \& 2$
b. $3 \& 4$
c. $1,2,3, \& 4$
d. NOTA
a_9. The transient state(s) in the above Markov chain $=$
a. $1 \& 2$
b. $3 \& 4$
c. $1,2,3, \& 4$
d. NOTA
__h_ 10. The probability that the system reaches an absorbing state, beginning in state 1 , is (choose nearest value):
a. 0.3
b. 0.4
c. 0.5
d. 0.6
e. 0.7
f. 0.8
g. 0.9
h. 1.0
d 11. The quantity $f_{13}^{(4)}$ is
a. the probability that the system, beginning in state 1 , is in state 3 at stage 4
b. the probability that the system first visits state 3 before state 4 .
c. the expected number of visits to state 3 during the first 4 stages, beginning in state 1
d. the probability that the system, beginning in state 1 , first reaches state 3 in stage 4
e. the stage in which the system, beginning in state 1 , visits state 3 for the fourth time
f. NOTA
_b
12. From which state is the system more likely to eventually reach state 4 ?
a. 1
b. 2
c. equally likely
d. NOTA
f 13. What is the probability that the system is absorbed into state 4 , starting in state 1 , if the first transition is to state 2? (choose nearest value)
a. 30% or less
b. 35%
c. 40%
d. 45%
e. 50%
f. 55%
g. 60%
h. 65% or more
h 14. The probability that the system, starting in state 1 , is in state 1 after 2 stages? (choose nearest value)
a. 5% or less
b. 10%
c. 15%
d. 20%
e. 25%
f. 30%
g. 35%
h. 40% or more
\qquad
\qquad 15. The probability that the system, starting in state 1 , is in state 4 after 3 stages? (choose nearest value)
a. 5% or less
b. 10%
c. 15%
d. 20%
e. 25%
f. 30%
g. 35%
h. 40% or more
f 16. In general, the steadystate probability distribution π (if it exists) must satisfy
a. $\mathrm{P} \pi=0$
c. $\mathrm{P} \pi=1$
e. $\pi \mathrm{P}=1$
b. $\mathrm{P} \pi=\pi$
d. $\pi \mathrm{P}=0$
f. $\pi \mathrm{P}=\pi$
g. NOTA

