56:171 Operations Research
 Quiz \#5 Version A Solution -- Fall 2002

Part 1. Transportation Simplex Method.

Consider the feasible solution of the transportation problem below:

dstn \rightarrow \downarrow source	1	2	3	4	5	Supply
A	$\begin{array}{r} \mid 12 \\ 0 \end{array}$	$\begin{array}{l\|l} \hline & \underline{8} \\ 7 \end{array}$	$\underline{\square}$	\|10	$2 \quad 11$	9
B	\|10	$\underset{\text { nonbasic }}{ } \begin{aligned} & 111 \end{aligned}$	\|12	\|11	$\begin{array}{ll} \hline 7 & \boxed{14} \end{array}$	7
C		$\square 7$	$\begin{array}{r} \mid 11 \\ \text { nonbasic } \end{array}$	$\begin{array}{ll} \hline 14 \\ \hline \end{array}$	$\underline{\square}$	5
D	${ }_{\text {nonbasic }}^{\underline{113}}$	$\lcm{12}$	$2 \quad 13$	$5 \quad \underline{12}$	$\boxed{12}$	7
E	$\begin{array}{r} \mid 8 \\ \text { nonbasic } \end{array}$	$\underline{\square}$	$3 \quad \underline{10}$	$\lcm{\square}$	$\boxed{10}$	3
Demand=	4	7	5	6	9	

_a_1. Which additional variable $(=0)$ of those below might be made a basic variable in order to complete the (degenerate) basis?
a. XA1
c. XB 2
e. Xe1
b. XD1
d. $\mathrm{XC3}$
f. None of above
d 2. If we choose to assign dual variable $\mathrm{U}{\mathrm{D}}=5$, what must be the value of dual variable V_{3} ?
a. 0
c. 6
e. 11
b. 3
d. 8
f. None of above
e 3. If, in addition to $U{D}=5$, we determine that $V_{2}=-2$, then the reduced cost of $X_{D 2}$ is
a. 0
c. +5
e. +9
b. -3
d. -8
f. None of above
a_4. If we initially assign $\mathrm{U}_{\mathrm{D}}=0$ (rather than $\mathrm{U}_{\mathrm{D}}=5$) and then compute the remaining dual variables, a different value of the reduced cost of $\mathrm{X}_{\mathrm{D} 2}$ will be obtained, although its sign will remain the same.
a. True
b. False
c. Cannot be determined
_e_5. Suppose XE1 enters the basis (ignoring whether it would improve the solution or not). Which variable must leave the basis?
a. XA2
c. XC 4
e. Xe3
b. XCl
d. XD 3
f. None of above

Part 2: Assignment Problem

Consider the problem of assigning machines (rows) to jobs (columns), with cost matrix

	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$
$\mathbf{1}$	$\mathbf{0}$	$\mathbf{2}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{0}$
$\mathbf{2}$	2	$\mathbf{2}$	$\mathbf{0}$	6	3
$\mathbf{3}$	4	$\mathbf{0}$	$\mathbf{5}$	5	2
$\mathbf{4}$	7	$\mathbf{0}$	$\mathbf{5}$	3	4
$\mathbf{5}$	$\mathbf{0}$	$\mathbf{2}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{4}$

By drawing lines in rows $1 \& 5$ and in columns $2 \& 3$, all the nine zeroes are "covered".
_ c 1. After the next step of the Hungarian method, the number of zeroes in the cost matrix will be
a. 7
c. 9
e. 11
b. 8
d. 10
f. None of the above

Consider the reduced assignment problem shown below:

$\mathbf{1}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$
$\mathbf{1}$	0	0	3	1	3
$\mathbf{2}$	1	2	0	2	0
$\mathbf{3}$	$\mathbf{4}$	3	5	5	0
$\mathbf{4}$	1	0	5	3	5
$\mathbf{5}$	0	2	1	0	11

_a 2. A zero-cost solution of the problem with this cost matrix must have
a. $\mathrm{X} 11=1$
c. $\mathrm{X} 12=1$
e. $\mathrm{X} 54=0$
b. $\mathrm{X} 42=0$
d. $\mathrm{X} 25=1$
f. None of the above

Part 3. True(+) or False(o) ?

$\ldots \pm 1$. The transportation problem is a special case of a linear programming problem.
_o_2. The Hungarian algorithm can be used to solve a transportation problem.
_ _3. Every basic feasible solution of an assignment problem must be degenerate.
o 4. If the current basic solution of a transportation problem is degenerate, no improvement of the objective function will occur in the next iteration of the (transportation) simplex method.
o 5. The Hungarian algorithm is the simplex method specialized to the assignment problem.
+_6. At each iteration of the Hungarian method, the original cost matrix is replaced with a new cost matrix having the same optimal assignment.

Part 1. Transportation Simplex Method.

Consider the feasible solution of the transportation problem below:

dstn \rightarrow \downarrow source	1	2	3	4	5	Supply
A	$0 \text { \& basic }$	$\begin{array}{l\|l} \hline & \underline{8} \\ \hline 7 & \end{array}$	$\underline{\square}$	\|10	$2 \quad 11$	9
B	$\underline{10}$	$\underset{\text { nonbasic }}{ } \begin{aligned} & 111 \end{aligned}$	$\underline{12}$	$\underline{11}$	$\begin{aligned} & \hline 7 \\ & \hline 14 \end{aligned}$	7
C	$\begin{array}{l\|l} \hline & \underline{9} \\ \hline \end{array}$	$\square 7$	$\begin{array}{r} \mid 11 \\ \text { nonbasic } \end{array}$	$\begin{array}{l\|l\|} \hline 14 \\ \hline \end{array}$	$\underline{\square}$	5
D	$\underset{\text { nonbasic }}{\lfloor 13}$	$\boxed{12}$	$2 \quad \underline{13}$	$\begin{array}{l\|l} \hline 5 & \underline{12} \end{array}$	$\boxed{12}$	7
E	$\begin{array}{r} \mid 8 \\ \text { nonbasic } \end{array}$	\| 9	$3 \quad 110$	$\lcm{\square}$	10	3
Demand=	4	7	5	6	9	

_c_1. Which additional variable $(=0)$ of those below might be made a basic variable in order to complete the (degenerate) basis?
a. XB 2
c. XA1
e. XE1
b. XC3
d. XD1
f. None of above
d 2. If we choose to assign dual variable $U{D}=5$, what must be the value of dual variable V_{3} ?
a. 0
c. 6
e. 11
b. 3
d. 8
f. None of above
e 3. If, in addition to $U{D}=5$, we determine that $V_{2}=-2$, then the reduced cost of $X_{D 2}$ is
a. 0
c. +5
e. +9
b. -3
d. -8
f. None of above
a_4. If we initially assign $\mathrm{U}_{\mathrm{D}}=0$ (rather than $\mathrm{U}_{\mathrm{D}}=5$) and then compute the remaining dual variables, a different value of the reduced cost of $\mathrm{X}_{\mathrm{D} 2}$ will be obtained, although its sign will remain the same.
a. True
b. False
c. Cannot be determined
_e_5. Suppose $X_{E I}$ enters the basis (ignoring whether it would improve the solution or not). Which variable must leave the basis?
a. XCl
c. XA2
e. Xe3
b. XC4
d. XD 3
f. None of above

Part 2: Assignment Problem

Consider the problem of assigning machines (rows) to jobs (columns), with cost matrix

	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$
$\mathbf{1}$	$\mathbf{0}$	$\mathbf{2}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{0}$
$\mathbf{2}$	2	$\mathbf{2}$	$\mathbf{0}$	6	3
$\mathbf{3}$	4	$\mathbf{0}$	$\mathbf{5}$	5	2
$\mathbf{4}$	7	$\mathbf{0}$	$\mathbf{5}$	3	4
$\mathbf{5}$	$\mathbf{0}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{4}$

By drawing lines in rows $1 \& 5$ and in columns $2 \& 3$, all the nine zeroes are "covered".
\qquad 1. After the next step of the Hungarian method, the number of zeroes in the cost matrix will be
a. 7
c. 9
e. 11
b. 8
d. 10
f. None of the above

Consider the reduced assignment problem shown below:

$\mathbf{1}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$
$\mathbf{1}$	0	0	3	1	3
$\mathbf{2}$	1	2	0	2	0
$\mathbf{3}$	$\mathbf{4}$	3	5	5	0
$\mathbf{4}$	1	0	5	3	5
$\mathbf{5}$	0	2	1	0	$\mathbf{1}$

_a 2. A zero-cost solution of the problem with this cost matrix must have
a. $\mathrm{X} 11=1$
c. $\mathrm{X} 12=1$
e. $\mathrm{X} 54=0$
b. $\mathrm{X} 42=0$
d. $\mathrm{X} 25=1$
f. None of the above

Part 3. True(+) or False(o) ?

$\pm \pm 1$. The assignment problem is a special case of an transportation problem.
_o 2. The number of basic variables in a $n \times n$ assignment problem is 2 n .
o 3. The dual variables of the transportation problem are uniquely determined at each iteration of the simplex method.
\qquad 4. The transportation simplex method can be applied to solution of an assignment problem.
. The optimal dual variables of the transportation problem obtained at the final iteration must be nonnegative.
o 6. A "balanced" transportation problem has an equal number of sources and destinations.

Part 1. Transportation Simplex Method.

Consider the feasible solution of the transportation problem below:

dstn \rightarrow $\downarrow_{\text {source }}$	1	2	3	4	5	Supply
A		$\begin{array}{l\|l} \hline 7 & \boxed{8} \end{array}$	$\underline{\square}$	\|10	$2 \quad 11$	9
B	\|10	$\begin{array}{r} \mid 11 \\ \text { nonbasic } \end{array}$	$\underline{12}$	$\underline{11}$	$\begin{array}{ll} \hline 7 & 14 \\ \hline \end{array}$	7
C	$\begin{array}{l\|l} \hline & \underline{9} \end{array}$	$\llcorner 7$	$\begin{array}{r} \mid 11 \\ \text { nonbasic } \end{array}$	$\begin{array}{l\|l\|} \hline 1 & \underline{14} \end{array}$	$\underline{\square}$	5
D	$\underset{\text { nonbasic }}{\underline{13}}$	$\boxed{12}$	$2 \quad \underline{13}$	$\begin{array}{l\|l} \hline 5 & \underline{12} \end{array}$	$\boxed{12}$	7
E	$\underset{\text { nonbasic }}{\stackrel{1}{1}}$	\| $\quad 9$	$3 \quad 110$	$\stackrel{\square}{\square}$	$\boxed{10}$	3
Demand=	4	7	5	6	9	

_d_1. Which additional variable $(=0)$ of those below might be made a basic variable in order to complete the (degenerate) basis?
a. XD1
b. XC3
c. Xe1
d XA1
e. XB2
f. None of above
_e_2. If we choose to assign dual variable $U_{D}=5$, what must be the value of dual variable V_{3} ?
a. 0
b. 6
c. 11
d. 3
e. 8
f. None of above
c 3. If, in addition to $U_{D}=5$, we determine that $\mathrm{V}_{2}=-2$, then the reduced cost of XD2 is
a. 0
b. +5
c. +9
d. -3
e. -8
f. None of above
a_4. If we initially assign $\mathrm{U}_{\mathrm{D}}=0$ (rather than $\mathrm{U}_{\mathrm{D}}=5$) and then compute the remaining dual variables, a different value of the reduced cost of $\mathrm{X}_{\mathrm{D} 2}$ will be obtained, although its sign will remain the same.
a. True
b. False
c. Cannot be determined
_c_5. Suppose X_{EI} enters the basis (ignoring whether it would improve the solution or not). Which variable must leave the basis?
a. XA2
b. XC4
c. Xe3
d. XCl
e. XD3
f. None of above

Part 2: Assignment Problem

Consider the problem of assigning machines (rows) to jobs (columns), with cost matrix

	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$
$\mathbf{1}$	$\mathbf{0}$	$\mathbf{2}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{0}$
$\mathbf{2}$	2	$\mathbf{2}$	$\mathbf{0}$	6	3
$\mathbf{3}$	4	$\mathbf{0}$	$\mathbf{5}$	5	2
$\mathbf{4}$	7	$\mathbf{0}$	$\mathbf{5}$	3	4
$\mathbf{5}$	$\mathbf{0}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{4}$

By drawing lines in rows $1 \& 5$ and in columns $2 \& 3$, all the eight zeroes are "covered".
_b 1. After the next step of the Hungarian method, the number of zeroes in the cost matrix will be
a. 7
b. 9
c. 11
d. 8
e. 10
f. None of the above

Consider the reduced assignment problem shown below:

$\mathbf{1}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$
$\mathbf{1}$	0	0	3	1	3
$\mathbf{2}$	1	2	0	2	0
$\mathbf{3}$	4	3	5	5	0
$\mathbf{4}$	1	0	5	3	5
$\mathbf{5}$	0	2	1	0	11

_a 2. A zero-cost solution of the problem with this cost matrix must have
a. $\mathrm{X} 11=1$
b. $\mathrm{X} 12=1$
c. $\mathrm{X} 54=0$
d. $\mathrm{X} 42=0$
e. $\mathrm{X} 25=1$
f. None of the above

Part 3. True(+) or False(o) ?

_o 1. The Hungarian algorithm can be used to solve a transportation problem.
o 2. The number of basic variables in a $\mathrm{n} \times \mathrm{n}$ assignment problem is 2 n .
_o 3. If the current basic solution of a transportation problem is degenerate, no improvement of the objective function will occur in the next iteration of the (transportation) simplex method.
_o_4. The Hungarian algorithm is the simplex method specialized to the assignment problem.
_ _ 5. At each iteration of the Hungarian method, the original cost matrix is replaced with a new cost matrix having the same optimal assignment.
\pm 6. A "balanced" transportation problem has an equal number of supply and demand.

