"A manufacturer produces two types of plastic cladding. These have the trade names Ankalor and Beslite.

- One yard of Ankalor requires 8 lb of polyamine, 2.5 lb of diurethane and 2 lb of monomer.
- A yard of Beslite needs 10 lb of polyamine, 1 lb of diurethane, and 4 lb of monomer.
- The company has in stock $80,000 \mathrm{lb}$ of polyamine, $20,000 \mathrm{lb}$ of diurethane, and $30,000 \mathrm{lb}$ of monomer.
- Both plastics can be produced by alternate parameter settings of the production plant, which is able to produce cladding at the rate of 12 yards per hour.
- A total of 750 production plant hours are available for the next planning period.
- The contribution to profit on Ankalor is $\$ 10 /$ yard and on Beslite is $\$ 20 /$ yard.
- The company has a contract to deliver at least 3,000 yards of Ankalor.

What production plan should be implemented in order to maximize the contribution to the firm's profit from this product division."
Definition of variables: $\quad \mathrm{A}=$ Number of yards of Ankalor produced
$B=$ Number of yards of Beslite produced
LP model: 1) Maximize $10 \mathrm{~A}+20 \mathrm{~B}$ subject to
2) $8 \mathrm{~A}+10 \mathrm{~B} \leq 80,000 \quad$ (lbs. Polyamine available)
3) $\quad 2.5 \mathrm{~A}+1 \mathrm{~B} \leq 20,000$ (lbs. Diurethane available)
4) $2 \mathrm{~A}+4 \mathrm{~B} \leq 30,000$ (lbs. Monomer available)
5) $\mathrm{A}+\mathrm{B} \leq 9,000 \quad$ (lbs. Plant capacity)
6) $\mathrm{A} \geq 3,000$ (Contract)
$\mathrm{A} \geq 0, \mathrm{~B} \geq 0$
The LINDO solution is:
OBJECTIVE FUNCTION VALUE

1) 142000.000
VARIABLE VALUE REDUCED COST
$\begin{array}{ll}A & 3000.000 \\ \text { A } & 000\end{array}$
$\begin{array}{lll}\text { B } & 5600.000 & 0.000\end{array}$

ROW	SLACK OR SURPLUS	DUAL PRICES
2)	0.000	2.000
3)	6900.000	0.000
4)	1600.000	0.000
5)	400.000	0.000
6)	0.000	-6.000

RANGES IN WHCH THE BASIS IS UNCHANGED
OBJ COEFFICIENT RANGES

VARIABLE	CURRENT	ALLOWABLE	ALLOWABLE
	COEF	INCREASE	DECREASE
A	10.000	6.000	INFINITY
B	20.000	INFINITY	7.500
		RIGHTHAND SIDE RANGES	
ROW	CURRENT	ALLOWABLE	ALLOWABLE
	RHS	INCREASE	DECREASE
2	80000.000	4000.000	56000.000
3	20000.000	INFINITY	6900.000
4	30000.000	INFINITY	1600.000
5	9000.000	INFINITY	400.000
6	3000.000	2000.000	1333.333

Solutions

THE TABLEAU									
ROW	(BASIS)	A	B	SLK 2	SLK 3	SLK 4	SLK 5	SLK 6	RHS
1	ART	. 00	. 00	2.00	. 00	. 00	. 00	6.00	$0.14 \mathrm{E}+06$
2	B	. 00	1.00	. 10	. 00	. 00	. 00	. 80	5600.00
3	SLK 3	. 00	. 00	-. 10	1.00	. 00	. 00	1.70	6900.00
4	SLK 4	. 00	. 00	-. 40	. 00	1.00	. 00	-1.20	1600.00
5	SLK 5	. 00	. 00	-. 10	. 00	. 00	1.00	. 20	400.00
6	A	1.00	. 00	. 00	. 00	. 00	. 00	-1.00	3000.00

Consult the LINDO output above to answer the following questions. If there is $\underline{n o t} \underline{\text { sufficient } \underline{i n f o r m a t i o n ~}}$ in the LINDO output, answer "NSI".
_b_1. Suppose that the company can purchase 2000 pounds of additional polyamine for $\$ 2.50$ per pound. Should they make the purchase? a. yes b. no c. NSI (since the dual variable for row [2] is only \$2.00/lb.)
_a_2. Regardless of your answer in (4), suppose that they do purchase 2000 pounds of additional polyamine. Increasing the quantity of polyamine used in the model above is equivalent to
a. decreasing the slack in row 2 by 2000
d. decreasing surplus in row 2 by 2000
b. increasing the surplus in row 2 by 2000
e. none of the above
c. increasing the slack in row 2 by 2000
f. NSI
(since $8 \mathrm{~A}+10 \mathrm{~B}+\mathrm{SLK} 2=80000 \& 8 \mathrm{~A}+10 \mathrm{~B}=82000 \Rightarrow$ SLK2 $=-2000$.)
c_3. If the company purchases 2000 pounds of additional polyamine, what is the total amount of Ankelor that they should deliver? (Choose nearest value!)
a. 2800 yards
c. 3000 yards unchanged!
e. 3200 yards
b. 2900 yards
d. 3100 yards
f. NSI
(substitution rate of SLK2 for A is 0 , so A is unchanged as SLK2 decreases, up to ALLOWABLE INCREASE for RHS of row\#2, i.e., 4000.)
_d_4. If the company purchases 2000 pounds of additional polyamine, what is the total amount of Beslite that they should deliver? (Choose nearest value!)
a. 5500 yards
c. 5700 yards
e. 5900 yards
b. 5600 yards
d. 5800 yards
f. NSI
(substitution rate of SLK2 for B is 0.10 , so B increases by 0.10 for each pound decrease in $S L K 2$)
_c_5. How will the decision to purchase 2000 pounds of additional polyamine change the quantity of diurethane used during the next planning period?
a. increase by 100 pounds
c. increase by 200 pounds
e. none of the above
b. decrease by 100 pounds
d. decrease by 200 pounds
f. NSI
(substitution rate of SLK2 for SLK3 is -0.10, so SLK3 decreases by $0.10 l b$ for each pound decrease in $S L K 2 \Rightarrow 2.5 \mathrm{~A}+1 \mathrm{~B}$ (i.e., amount of diurethane used) increases by 200 pounds.)
_b 6. If the profit contribution from Beslite were to decrease from $\$ 20$ to $\$ 13 / y$ ard, will the optimal values of A \&/or B change? a. yes b. no c. NSI (Since decrease of $\$ 7$ is less than ALLOWABLE DECREASE which is $\$ 7.50$.)
_a_7. If the profit contribution from Ankelor were to increase from $\$ 10$ to $\$ 17 /$ yard, will the optimal values of A \&/or B change? a. yes b. no c. NSI (Since increase of $\$ 7$ is greater than ALLOWABLE INCREASE which is $\$ 6$.)
_a_8. Suppose that the company could deliver 1000 yards less than the contracted amount of Ankalor if they were to pay a penalty of \$5/yard shortage.
Should they do so? a. yes b. no c. NSI
(Since dual variable for row [6] is $-\$ 6.00$, profit would decrease by $\$ 6$ for every pound increase, or decrease by $\$ 6$ for every pound decrease in requirements.)
_b 9. Is the optimal solution of this LP degenerate? (No zero appears on RHS of optimal tableau.)
_b_10. Are there multiple optimal solutions of this LP? \quad a. yes b. no c. NSI (No zero appears in objective row (1) of any nonbasic column of tableau.)

