56:171 Operations Research Quiz #3 Solutoins -- 20 September 2002

Part I. For each statement, indicate "+"=true or "o"=false.

Part I. For each statement, indicate "+"=true or "0"=faise.
<u>o</u> a. When you enter an LP formulation into LINDO, you must first convert all inequalities to
equations.
<u>o</u> b. Unlike the ordinary simplex method, the "Revised Simplex Method" never requires the
use of artificial variables.
+ c. Whether an LP is a minimization or a maximization problem, the first phase of the two-
phase method is exactly the same.
o d. At the beginning of the <i>first</i> phase of the two-phase simplex method, the phase-one
objective function will have the value 0.
+ e. At the end of the <i>first</i> phase of the two-phase simplex method, the phase-one objective
function must be zero if the LP is feasible.
o f. If a zero appears on the right-hand-side of row i of an LP tableau, then at the next
iteration you <i>must</i> pivot in row i.
+ g. If an LP model has constraints of the form $Ax \le b$, $x \ge 0$, and b is nonnegative, then there
is no need for artificial variables.
o h. If a zero appears on the right-hand-side of row <i>i</i> of an LP tableau, then at the next
iteration you <i>cannot</i> pivot in row <i>i</i> .
\underline{o} i. Every variable in the "primal" problem has a corresponding dual variable.
o j. The primal LP is a minimization problem, whereas the dual problem is a maximization
problem.
+ k. If the slack or surplus variable in a constraint is positive, then the corresponding dual
variable must be zero.
+ 1. If the right-hand-side of constraint <i>i</i> in the LP problem "Minimize cx st Ax \leq b, x \geq 0"
increases, then the optimal value must either decrease or remain unchanged.
α m If the right-hand-side of constraint <i>i</i> in the LP problem "Maximize cx st A h x>0"
$\underline{0}$ in the right hand side of constraint t in the Er problem (Waximze exist $\underline{N} = 0$, $\underline{N} = 0$)
o n. The revised simpley method usually requires fewer iterations than the ordinary simpley
<u></u> II. The revised simplex method usually requires rewer iterations than the ordinary simplex method
+ • • The simplex multipliers at the termination of the revised simplex method are always
feasible in the dual LP of the problem being solved
\pm n. In the two phase method, the first phase finds a basic feasible solution to the LD being
p. In the two-phase method, the first phase finds the optimal solution
solved, while the second phase must be optimized by the solution. \pm a The original objective function is ignored during phase one of the two phase method
$ $$
\pm r. If a zero appears in row <i>i</i> of the column of substitution rates in the pivot column, then
then row <i>i</i> cannot be the pivot row.

Part II. Sensitivity analysis using LINDO.

Ken and Larry, Inc., supplies its ice cream parlors with three flavors of ice cream: chocolate, vanilla, and banana. Because of extremely hot weather and a high demand for its products, the company has run short of its supply of ingredients: milk, sugar, & cream. Hence, they will not be able to fill all the orders received from their retail outlets, the ice cream parlors. Owing to these circumstances, the company has decided to choose the amount of each product to produce that will maximize total profit, given the constraints on supply of the basic ingredients.

The chocolate, vanilla, and banana flavors generate, respectively, \$1.00, \$0.90, and \$0.95 per profit per gallon sold. The company has only 200 gallons of milk, 150 pounds of sugar, and 60 gallons of cream left in its inventory. The LP formulation for this problem has variables C, V, and B representing gallons of chocolate, vanilla, and banana ice cream produced, respectively.

```
MAXIMIZE C+0.9V+0.95B
ST
0.45C + 0.50V + 0.40B <= 200 ! milk resource
0.50C + 0.40V + 0.40B <= 150 ! sugar resource
0.10C + 0.15V + 0.20B <= 60 ! cream resource
END
```

OBJECTIVE FUNCTION VALUE 1) 341.2500 VARIABLE VALUE REDUCED COST C 0.000000 0.037500 V 300.000000 0.000000 B 75.000000 0.000000	
1) 341.2500 VARIABLE VALUE REDUCED COST C 0.000000 0.037500 V 300.000000 0.000000 B 75.000000 0.000000	
VARIABLE VALUE REDUCED COST C 0.000000 0.037500 V 300.000000 0.000000 B 75.000000 0.000000	
VARIABLE VALUE REDUCED COST C 0.000000 0.037500 V 300.000000 0.000000 B 75.000000 0.000000	
C0.0000000.037500V300.0000000.000000B75.0000000.000000	
V 300.000000 0.000000 B 75.000000 0.000000	
в 75.000000 0.000000	
ROW SLACK OR SURPLUS DUAL PRICES	
2) 20.00000 0.00000	
3) 0.000000 1.875000	
4) 0.000000 1.000000	

RANGES IN	WHICH THE BASIS	IS UNCHANGED:		
		OBJ COEFFICIENT	RANGES	
VARIABLE	CURRENT	ALLOWABLE	ALLOWABLE	
	COEF	INCREASE	DECREASE	
C	1.000000	0.037500	INFINITY	
V	0.90000	0.050000	0.012500	
В	0.950000	0.021429	0.050000	
		RIGHTHAND SIDE 1	RANGES	
ROW	CURRENT	ALLOWABLE	ALLOWABLE	
	RHS	INCREASE	DECREASE	
2	200.000000	INFINITY	20.00000	
3	150.000000	10.00000	30.00000	
4	60.00000	15.000000	3.750000	

True/False (+ or 0):

<u>+</u> 1. If the profit per gallon of chocolate increases to \$1.02, the basis and the values of the basic variables will be unchanged.

<u>o</u> 2. If the profit per gallon of vanilla drops to \$0.88, the basis and the values of the basic variables will be unchanged.

Multiple choice: (*NSI* = "not sufficient information")

<u>d</u>	3. If the amount of cream available were to increase to 65 gallons, the increase in profit will be	9
	hoose nearest value):	

a. \$0.00 b. \$0.50 c. \$1 d. \$5 e. \$10 f. NSI

<u>a</u> 4. If the amount of milk available were to increase to 225 gallons, the increase in profit will be *(choose nearest value):*

a. \$0.00 b. \$0.50 c. \$1 d. \$5 e. \$10 f. NSI

<u>e</u> 5. If the profit per gallon of banana ice cream were to drop to \$0.93 per gallon, the loss in total profit would be *(choose nearest value)*:

a. \$0.00 b. \$0.50 c. \$1 d. \$5 e. \$10 (\$15) f. NSI