\qquad

56:171 Operations Research

 Quiz \#1-6 September 2002Consider the following LP:

Minimize $3 X_{1}+2 X_{2}$
subject to (1) $2 X_{1}+X_{2} \geq 10$
(2) $-3 X_{1}+2 X_{2} \leq 6$
(3) $X_{1}+X_{2} \geq 6$ $X_{1} \geq 0 \& X_{2} \geq 0$

1. The feasible region has \qquad corner points, namely \qquad .
2. At point \mathbf{F}, the slack (or surplus) variable for constraint \# \qquad is positive. (If more than one such variable is positive, only one is required.)
3. The optimal solution is at point \qquad
Note: For your convenience, the $\left(X_{1}, X_{2}\right)$ coordinates of the points labeled above are:

Point	A	B	C	D	E	F	G	H
X_{1}	0	0	4	2	0	1.2	5	6
X_{2}	6	3	2	6	0	4.8	0	0

4. Which of the three matrices below (each of which are row-equivalent to A) is the result of a "pivot" in matrix A? (If more than one answer is correct, only one answer is required.) \qquad

$$
A=\left[\begin{array}{ccc}
1 & 1 & -1 \\
1 & 2 & 1 \\
-2 & -1 & 1
\end{array}\right], B=\left[\begin{array}{ccc}
0 & -1 & -2 \\
1 & 2 & 1 \\
0 & 3 & 3
\end{array}\right], C=\left[\begin{array}{ccc}
1 / 2 & 0 & -1 / 2 \\
1 / 2 & 1 & 1 / 2 \\
-1 & 0 & 0
\end{array}\right], D=\left[\begin{array}{ccc}
-1 & 0 & 0 \\
1 & 2 & 1 \\
-3 & -3 & 0
\end{array}\right]
$$

_5. Which method of solving a system of linear equations requires more row operations?
a. Gauss elimination
b. Gauss-Jordan elimination c. Both require same number
\qquad

Consider the following LP:

Maximize $3 X_{1}+2 X_{2}$
subject to (1) $2 X_{1}+X_{2} \leq 10$
(2) $-3 X_{1}+2 X_{2} \leq 6$
(3) $X_{1}+X_{2} \geq 6$ $X_{1} \geq 0 \& X_{2} \geq 0$

1. The feasible region has \qquad corner points, namely \qquad .
2. At point \mathbf{F}, the slack (or surplus) variable for constraint \# \qquad is positive. (If more than one such variable is positive, only one is required.)
3. The optimal solution is at point \qquad
Note: For your convenience, the $\left(X_{1}, X_{2}\right)$ coordinates of the points labeled above are:

Point	A	B	C	D	E	F	G	H
X_{1}	0	0	4	2	0	1.2	5	6
X_{2}	6	3	2	6	0	4.8	0	0

4. Which of the three matrices below (each of which are row-equivalent to A) is the result of a "pivot" in matrix A? (If more than one answer is correct, only one answer is required.) \qquad

$$
A=\left[\begin{array}{ccc}
1 & 1 & -1 \\
-1 & 2 & 1 \\
-2 & 1 & 1
\end{array}\right], B=\left[\begin{array}{ccc}
0 & 3 & 0 \\
1 & -2 & -1 \\
0 & 3 & -1
\end{array}\right], C=\left[\begin{array}{ccc}
3 / 2 & 0 & -3 / 2 \\
-1 / 2 & 1 & 1 / 2 \\
-3 / 2 & 0 & 1 / 2
\end{array}\right], D=\left[\begin{array}{ccc}
-1 & 2 & 0 \\
-1 & 2 & 1 \\
-1 & -1 & 0
\end{array}\right]
$$

\qquad 5. Which method of solving a system of linear equations requires more row operations?
a. Gauss elimination
b. Gauss-Jordan elimination
c. Both require same number
\qquad

56:171 Operations Research

 Quiz \#1 - 6 September 2002Consider the following LP:

Maximize $3 X_{1}+2 X_{2}$
subject to (1) $2 X_{1}+X_{2} \leq 10$
(2) $-3 X_{1}+2 X_{2} \leq 6$
(3) $X_{1}+X_{2} \leq 6$ $X_{1} \geq 0 \& X_{2} \geq 0$

1. The feasible region has \qquad corner points, namely \qquad .
2. At point \mathbf{C}, the slack (or surplus) variable for constraint \# \qquad is positive. (If more than one such variable is positive, only one is required.)
3. The optimal solution is at point \qquad
Note: For your convenience, the $\left(X_{1}, X_{2}\right)$ coordinates of the points labeled above are:

Point	A	B	C	D	E	F	G	H
X_{1}	0	0	4	2	0	1.2	5	6
X_{2}	6	3	2	6	0	4.8	0	0

4. Which of the three matrices below (each of which are row-equivalent to A) is the result of a "pivot" in matrix A? (If more than one answer is correct, only one answer is required.) \qquad

$$
A=\left[\begin{array}{ccc}
2 & 1 & -1 \\
-1 & 2 & 1 \\
-2 & 1 & 1
\end{array}\right], B=\left[\begin{array}{ccc}
0 & 2 & 0 \\
1 & -2 & -1 \\
0 & -3 & -1
\end{array}\right], C=\left[\begin{array}{ccc}
5 / 2 & 0 & -3 / 2 \\
-1 / 2 & 1 & 1 / 2 \\
-4 & 0 & 2
\end{array}\right], D=\left[\begin{array}{ccc}
1 & 3 & 0 \\
-1 & 2 & 1 \\
-1 & -1 & 0
\end{array}\right]
$$

\qquad 5. Which method of solving a system of linear equations requires more row operations?
a. Gauss elimination
b. Gauss-Jordan elimination
c. Both require same number

