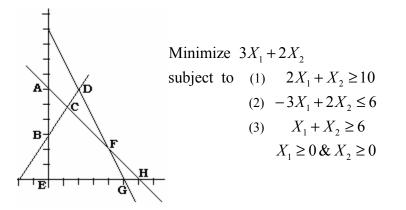
Name _____

56:171 Operations Research Quiz #1 – 6 September 2002
--

Consider the following LP:



- The feasible region has _____ corner points, namely _____.
 At point F, the slack (or surplus) variable for constraint # _____ is positive. *(If more than one such* variable is positive, only one is required.)
- 3. The optimal solution is at point

Note: For your convenience, the (X_1, X_2) coordinates of the points labeled above are:

Point	Α	В	С	D	Е	F	G	Н
X_1	0	0	4	2	0	1.2	5	6
X ₂	6	3	2	6	0	4.8	0	0

4. Which of the three matrices below (each of which are *row-equivalent* to A) is the result of a "pivot" in matrix A? (If more than one answer is correct, only one answer is required.)

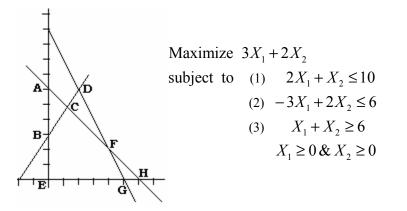
$A = \begin{bmatrix} 1 & 1 \\ 1 & 2 \\ -2 & -1 \end{bmatrix}$	$\begin{bmatrix} -1\\1\\1 \end{bmatrix}, B = \begin{bmatrix} 0\\1\\0 \end{bmatrix}$	$ \begin{bmatrix} -1 & -2 \\ 2 & 1 \\ 3 & 3 \end{bmatrix}, C = $	$\begin{bmatrix} \frac{1}{2} & 0 & -\frac{1}{2} \\ \frac{1}{2} & 1 & \frac{1}{2} \\ -1 & 0 & 0 \end{bmatrix}$	$,D = \begin{bmatrix} -1 & 0 & 0 \\ 1 & 2 & 1 \\ -3 & -3 & 0 \end{bmatrix}$
---	---	--	---	---

5. Which method of solving a system of linear equations requires more row operations? a. Gauss elimination b. Gauss-Jordan elimination c. Both require same number

Name ___

Quiz #1 – 6 September 2002

Consider the following LP:



- The feasible region has _____ corner points, namely _____.
 At point F, the slack (or surplus) variable for constraint # _____ is positive. (If more than one such variable is positive, only one is required.)
- 3. The optimal solution is at point _____

Note: For your convenience, the (X_1, X_2) coordinates of the points labeled above are:

Point	Α	В	С	D	Е	F	G	Н
X_1	0	0	4	2	0	1.2	5	6
X ₂	6	3	2	6	0	4.8	0	0

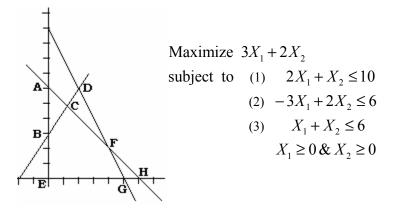
4. Which of the three matrices below (each of which are row-equivalent to A) is the result of a "pivot" in matrix A? (If more than one answer is correct, only one answer is required.)

$$A = \begin{bmatrix} 1 & 1 & -1 \\ -1 & 2 & 1 \\ -2 & 1 & 1 \end{bmatrix}, B = \begin{bmatrix} 0 & 3 & 0 \\ 1 & -2 & -1 \\ 0 & 3 & -1 \end{bmatrix}, C = \begin{bmatrix} \frac{3}{2} & 0 & -\frac{3}{2} \\ -\frac{1}{2} & 1 & \frac{1}{2} \\ -\frac{3}{2} & 0 & \frac{1}{2} \end{bmatrix}, D = \begin{bmatrix} -1 & 2 & 0 \\ -1 & 2 & 1 \\ -1 & -1 & 0 \end{bmatrix}$$

5. Which method of solving a system of linear equations requires more row operations? a. Gauss elimination b. Gauss-Jordan elimination c. Both require same number

56:171 Operations Research Quiz #1 – 6 September 2002
--

Consider the following LP:



- The feasible region has _____ corner points, namely _____.
 At point C, the slack (or surplus) variable for constraint # _____ is positive. *(If more than one such* variable is positive, only one is required.)
- 3. The optimal solution is at point

Note: For your convenience, the (X_1, X_2) coordinates of the points labeled above are:

Point	Α	В	С	D	Е	F	G	Н
X_1	0	0	4	2	0	1.2	5	6
X ₂	6	3	2	6	0	4.8	0	0

4. Which of the three matrices below (each of which are row-equivalent to A) is the result of a "pivot" in matrix A? (If more than one answer is correct, only one answer is required.)

$A = \begin{bmatrix} 2 & 1 & -1 \\ -1 & 2 & 1 \\ -2 & 1 & 1 \end{bmatrix}, B = \begin{bmatrix} 0 & 2 & 0 \\ 1 & -2 & -1 \\ 0 & -3 & -1 \end{bmatrix}, C = \begin{bmatrix} \frac{5}{2} & 0 & -\frac{3}{2} \\ -\frac{1}{2} & 1 & \frac{1}{2} \\ -4 & 0 & 2 \end{bmatrix}, D = \begin{bmatrix} 1 & 3 & 0 \\ -1 & 2 & 1 \\ -1 & -1 & 0 \end{bmatrix}$		2	1	-1]	[0	2	0]		$\left[\frac{5}{2} \right]$	0	$-\frac{3}{2}$		[1]	3	0]
$\begin{vmatrix} -2 & 1 & 1 \end{vmatrix} = \begin{vmatrix} 0 & -3 & -1 \end{vmatrix} = \begin{vmatrix} -4 & 0 & 2 \end{vmatrix} = \begin{vmatrix} -1 & -1 & 0 \end{vmatrix}$	A =	-1	2	1	,B=	1	-2	-1	, <i>C</i> =	$-\frac{1}{2}$	1	$\frac{1}{2}$, <i>D</i> =	-1	2	1
		2	1	1		0	-3	-1		-4	0	2		1	-1	0

5. Which method of solving a system of linear equations requires more row operations? a. Gauss elimination b. Gauss-Jordan elimination c. Both require same number