Version A: A machine operator has the task of keeping two machines running. Each machine runs for an average of $\mathbf{3 0}$ minutes before it becomes jammed, requiring the operator's attention. When a machine jams, he spends an average of $\mathbf{2 0}$ minutes restoring the machine to running condition, unless both machines are jammed, in which case he works faster, clearing the jam in an average of $\mathbf{1 5}$ minutes. Define a continuous-time Markov chain, with the state of the system being the number of machines which are jammed.

1-4. Specify (by letter) each of the transition rates:

$$
\begin{array}{ll}
\lambda_{0}=4 / \mathrm{hr} & \lambda_{1}=\underline{2 / \mathrm{hr}} \\
\mu_{1}=\underline{3 / \mathrm{hr}} & \mu_{2}=\underline{4 / \mathrm{hr}}
\end{array}
$$

_b_5. Which equation is used to compute the steadystate probability π_{0} ?
$\pi_{0}=\frac{\lambda_{0}}{\mu_{1}} \times \frac{\lambda_{1}}{\mu_{2}}$
(e). $\pi_{0}=\left(1+\frac{\lambda_{0}}{\mu_{1}}+\frac{\lambda_{1}}{\mu_{2}}\right)^{-1}$
(b.)

$$
\begin{aligned}
& \pi_{0}=\left(1+\frac{\lambda_{0}}{\mu_{1}}+\frac{\lambda_{0}}{\mu_{1}} \times \frac{\lambda_{1}}{\mu_{2}}\right)^{-1}=\left(1+\frac{4}{3}+\frac{4}{3} \times \frac{1}{2}\right)^{-1}=(3)^{-1}=\frac{1}{3} \Rightarrow \pi_{1}=\frac{4}{3} \pi_{0}=\frac{4}{9}, \pi_{2}=\frac{2}{3} \pi_{0}=\frac{2}{9} \\
& \begin{array}{ll}
1+\frac{\lambda_{0}}{\lambda_{1}} & \text { (f.) } \pi_{0}=\frac{\lambda_{0}}{1+\frac{\mu_{1}}{\mu_{2}}} \times\left(\frac{\lambda_{1}}{\mu_{2}}\right)^{2}
\end{array}
\end{aligned}
$$

(h.) None of the above

f 6 . What is the relationship between π_{0} and π_{1} for this system?
a. $\pi_{1}=\pi_{0}$
b. $\pi_{1}=\frac{1}{4} \pi_{0}$
c. $\pi_{1}=\frac{1}{3} \pi_{0}$
d. $\pi_{1}=\frac{1}{2} \pi_{0}$
e. $\pi_{1}=\frac{2}{3} \pi_{0}$
f. $\pi_{1}=\frac{4}{3} \pi_{0}$
g. $\pi_{1}=2 \pi_{0}$
h. None of the above
__b_7. The value of the steady-state probability π_{0} is (choose nearest value):
a. 30%
b. $35 \%(33 \%)$
c. 40%
d. 45%
e. 50%
f 55%
g. 60%
h. 65%
i. 70%
j. 75%
\qquad 8. The average number of machines which are running is (choose nearest value):
a. 0.2
b. 0.4
c. 0.6
d. 0.8
e. 1.0
f. 1.2 (1.111)
g. 1.4
h. 1.6
i. 1.8
j. 2.0
J 9. The utilization of the machine operator (i.e., the fraction of the time he is busy clearing jams) is
(choose nearest value):
a. 20%
b. 25%
c. 30%
d. 35%
e. 40%
f. 45%
g. 50%
h. 55%
i. 60%
j. 65\% (67\%)
h 10. The average number of jams per hour which the machine operator must clear is (choose nearest value):
a. 0.5
b. 0.75
c. 1.0
d. 1.25
e. 1.5
f. 1.75
g. 2.0
h. $2.25(2.222)$
i. 2.5
j. 2.75
c 11. The average time (in minutes) between the jamming of a machine until it is back in operation is (choose nearest value):
a. 15
b. 20
c. 25
d. 30
e. 35
f. 40
g. 45
h. 50
i. 55
j. 60
$<><><><><><><><\gg<><><><><><>$

Version B: A machine operator has the task of keeping two machines running. Each machine runs for an average of $\mathbf{3 0}$ minutes before it becomes jammed, requiring the operator's attention. When a machine jams, he spends an average of $\mathbf{1 5}$ minutes restoring the machine to running condition, unless both machines are jammed, in which case he works faster, clearing the jam in an average of $\mathbf{1 2}$ minutes. Define a continuous-time Markov chain, with the state of the system being the number of machines which are jammed.

1-4. Specify (by letter) each of the transition rates:

$$
\begin{array}{ll}
\lambda_{0}=4 / \mathrm{hr} & \lambda_{1}=2 / \mathrm{hr} \\
\mu_{1}=4 / \mathrm{hr} & \mu_{2}=5 / \mathrm{hr}
\end{array}
$$

_a_5. Which equation is used to compute the

steady-state probability π_{0} ?
(a.) $\pi_{0}=\left(1+\frac{\lambda_{0}}{\mu_{1}}+\frac{\lambda_{0}}{\mu_{1}} \times \frac{\lambda_{1}}{\mu_{2}}\right)^{-1}=\left(1+\frac{4}{4}+\frac{4}{4} \times \frac{2}{5}\right)^{-1}=\left(\frac{12}{5}\right)^{-1}=\frac{5}{12} \Rightarrow \pi_{1}=\frac{5}{12}, \pi_{2}=\frac{1}{6}$ (b.) $\pi_{0}=\frac{\lambda_{0}}{\mu_{1}} \times\left(\frac{\lambda_{1}}{\mu_{2}}\right)^{2}$
(c.) $\pi_{0}=\frac{1+\frac{\lambda_{0}}{\lambda_{1}}}{1+\frac{\mu_{1}}{\mu_{2}}}$
(d.) $\pi_{0}=\frac{1+\lambda_{0}+\lambda_{0} \times \lambda_{1}}{1+\mu_{1}+\mu_{1} \times \mu_{2}}$
(e.) $\pi_{0}=\frac{\lambda_{0}}{\mu_{1}} \times \frac{\lambda_{1}}{\mu_{2}}$
(f). $\pi_{0}=\left(1+\frac{\lambda_{0}}{\mu_{1}}+\frac{\lambda_{1}}{\mu_{2}}\right)^{-1}$

(h.) None of the above

e 6. What is the relationship between π_{0} and π_{1} for this system?
a. $\pi_{1}=\frac{1}{4} \pi_{0}$
b. $\pi_{1}=\frac{1}{3} \pi_{0}$
c. $\pi_{1}=\frac{1}{2} \pi_{0}$
d. $\pi_{1}=\frac{2}{3} \pi_{0}$
e. $\pi_{1}=\pi_{0}$
f. $\pi_{1}=2 \pi_{0}$
g. $\pi_{1}=3 \pi_{0}$
h. None of the above
_c_7. The value of the steady-state probability π_{0} is (choose nearest value):
a. 30%
b. 35%
c. $40 \%(41.66 \%)$
d. 45%
e. 50%
f 55%
g. 60%
h. 65%
i. 70%
j. 75%
\qquad 8. The average number of machines which are running is (choose nearest value):
a. 0.2
b. 0.4
c. 0.6
d. 0.8
e. 1.0
f. 1.2 (1.25)
g. 1.4
h. 1.6
i. 1.8
j. 2.0
i 9. The utilization of the machine operator (i.e., the fraction of the time he is busy clearing jams) is (choose nearest value):
a. 20%
b. 25%
c. 30%
d. 35%
e. 40%
f. 45%
g. 50%
h. 55%
i. $60 \%(58.33 \%)$ j. 65%
i 10. The average number of jams per hour which the machine operator must clear is (choose nearest value):
a. 0.5
b. 0.75
c. 1.0
d. 1.25
e. 1.5
f. 1.75
g. 2.0
h. 2.25
i. 2.5
j. 2.75
b 11. The average time (in minutes) between the jamming of a machine until it is back in operation is (choose nearest value):
a. 15
b. 20 (18)
c. 25
d. 30
e. 35
f. 40
g. 45
h. 50
i. 55
j. 60

Version C: A machine operator has the task of keeping two machines running. Each machine runs for an average of $\mathbf{6 0}$ minutes before it becomes jammed, requiring the operator's attention. When a machine jams, he spends an average of $\mathbf{2 0}$ minutes restoring the machine to running condition, unless both machines are jammed, in which case he works faster, clearing the jam in an average of $\mathbf{1 5}$ minutes. Define a continuous-time Markov chain, with the state of the system being the number of machines which are jammed.

1-4. Specify (by letter) each of the transition rates:

$$
\begin{array}{ll}
\lambda_{0}=2 / \mathrm{hr} & \lambda_{1}=1 / \mathrm{hr} \\
\mu_{1}=3 / \mathrm{hr} & \mu_{2}=4 / \mathrm{hr}
\end{array}
$$

f_5. Which equation is used to compute the steady-state probability π_{0} ?
(a.) $\pi_{0}=\left(1+\frac{\lambda_{0}}{\mu_{1}}+\frac{\lambda_{1}}{\mu_{2}}\right)^{-1}$
(d.) $\pi_{0}=\frac{\lambda_{0}}{\mu_{1}} \times\left(\frac{\lambda_{1}}{\mu_{2}}\right)^{2}$
(b.) $\pi_{0}=\frac{1+\frac{\lambda_{0}}{\lambda_{1}}}{1+\frac{\mu_{1}}{\mu_{2}}}$
(e.) $\pi_{0}=\frac{1+\lambda_{0}+\lambda_{0} \times \lambda_{1}}{1+\mu_{1}+\mu_{1} \times \mu_{2}}$
(c.) $\pi_{0}=\frac{\lambda_{0}}{\mu_{1}} \times \frac{\lambda_{1}}{\mu_{2}}$
(f). $\pi_{0}=\left(1+\frac{\lambda_{0}}{\mu_{1}}+\frac{\lambda_{0}}{\mu_{1}} \times \frac{\lambda_{1}}{\mu_{2}}\right)^{-1}=\left(1+\frac{2}{3}+\frac{2}{3} \times \frac{1}{4}\right)^{-1}=\left(\frac{11}{6}\right)^{-1}=\frac{6}{11} \Rightarrow \pi_{1}=\frac{2}{3} \pi_{0}=\frac{4}{11}, \pi_{2}=\frac{1}{6} \pi_{0}=\frac{1}{11}$

(h.) None of the above

e 6 . What is the relationship between π_{0} and π_{1} for this system?
a. $\pi_{1}=\pi_{0}$
b. $\pi_{1}=\frac{1}{4} \pi_{0}$
c. $\pi_{1}=\frac{1}{3} \pi_{0}$
d. $\pi_{1}=\frac{1}{2} \pi_{0}$
e. $\pi_{1}=\frac{2}{3} \pi_{0}$
f. $\pi_{1}=2 \pi_{0}$
g. $\pi_{1}=3 \pi_{0}$
h. None of the above
\qquad 7. The value of the steady-state probability π_{0} is (choose nearest value):
a. 30%
b. 35%
c. 40%
d. 45%
e. 50%
f 55% (54.54\%)
g. 60%
h. 65%
i. 70%
j. 75%
\qquad 8. The average number of machines which are running is (choose nearest value):
a. 1.0
b. 1.1
c. 1.2
d. 1.3
e. 1.4
f. $1.5(1.4545)$
g. 1.6
h. 1.7
i. 1.8
j. 1.9
_f 9. The utilization of the machine operator (i.e., the fraction of the time he is busy clearing jams) is
(choose nearest value):
a. 20%
b. 25%
c. 30%
d. 35%
e. 40%
f. $45 \%(45.45 \%)$
g. 50%
h. 55%
i. 60%
j. 65%
e 10. The average number of jams per hour which the machine operator must clear is (choose nearest value):
a. 0.5
b. 0.75
c. 1.0
d. 1.25
e. 1.5 (1.4545)
f. 1.75
g. 2.0
h. 2.25
i. 2.5
j. 2.75
b or c 11. The average time (in minutes) between the jamming of a machine until it is back in operation is (choose nearest value):
a. 15
b. $20 \quad(22.5)$
c. 25
d. 30
e. 35
f. 40
$\infty<>$
h. 50
i. 55
j. 60

The following are common to versions $A, B, \& \quad C$:

\qquad 12. For a continuous-time Markov chain, let Λ be the matrix of transition probabilities. The sum of each...
a. column is 1
c. row is 1
b. column is 0
d. row is 0
e. NOTA
13. In a birth/death process model of a queue, the time between departures is assumed to
a. have the Beta dist'n
c. be constant
e. have the uniform dist'n
b. have the Poisson dist' n
d. have the exponential dist'n
f. NOTA
\qquad 14. In an $M / M / 1$ queue, if the arrival rate $=\lambda<\mu=$ service rate, then
a. $\pi_{\mathrm{O}}=1$ in steady state
c. $\pi_{\mathrm{i}}>0$ for all i
e. the queue is not a birth-death process
b. no steady state exists
d. $\pi_{\mathrm{O}}=0$ in steady state
f. NOTA

True (+) or false (o)?
± 1. The continuous-time Markov chain on the previous page is a birth/death process.
o_ 16. Little's Law for queues is valid only if the queue is a birth/death process.
\pm 17. According to Little's Law, the average arrival rate is the ratio of average number of customers in the system to the average time per customer, i.e., $\underline{\lambda}=\mathrm{L} / \mathrm{W}$.
\pm 18. Little's Law for queues is valid for every queue which is a continuous-time Markov chain. Note: it is valid for other queues as well!

