56:171 Operations Research Quiz #10 Versions A, B, & C --Fall 2002

Version A: A machine operator has the task of keeping two machines running. Each machine runs for an average of **30** minutes before it becomes jammed, requiring the operator's attention. When a machine jams, he spends an average of 20 minutes restoring the machine to running condition, unless both machines are jammed, in which case he works faster, clearing the jam in an average of 15 minutes. Define a continuous-time Markov chain, with the state of the system being the number of machines which are $\lambda_1 = 2/hr$ $\lambda_0 = 4/hr$ jammed. 1-4. Specify (by letter) each of the transition rates: 2 0 1 $\lambda_0 = \frac{4}{hr}$ $\lambda_1 = \underline{2/hr}$ $\mu_1 = 3/hr$ $\mu_2 = 4/hr$ $\mu_1 = 3/hr$ $\mu_1 = 4/hr$

<u>b</u>5. Which equation is used to compute the steadystate probability π_0 ?

$$\pi_{0} = \frac{\lambda_{0}}{\mu_{1}} \times \frac{\lambda_{1}}{\mu_{2}} \qquad (e). \qquad \pi_{0} = \left(1 + \frac{\lambda_{0}}{\mu_{1}} + \frac{\lambda_{1}}{\mu_{2}}\right)^{-1} \\ (f). \qquad (f). \qquad (f). \qquad \pi_{0} = \frac{1 + \frac{\lambda_{0}}{\mu_{1}} + \frac{\lambda_{0}}{\mu_{2}} \times \frac{\lambda_{1}}{\mu_{2}}}{1 + \frac{\mu_{1}}{\mu_{2}}} \qquad (f). \qquad \pi_{0} = \frac{\lambda_{0}}{\mu_{1}} \times \left(\frac{\lambda_{1}}{\mu_{2}}\right)^{2} \qquad (g). \qquad \pi_{0} = \frac{1 + \lambda_{0} + \lambda_{0} \times \lambda_{1}}{1 + \mu_{1} + \mu_{1} \times \mu_{2}} \\ (h). None of the above \qquad (h). None of the above$$

<u>f</u> 6. What is the relationship between π_0 and π_1 for this system?

a. $\pi_1 = \pi_0$	b. $\pi_1 = \frac{1}{4}\pi_0$	$c. \ \pi_1 = \frac{1}{3} \pi_0$	d. $\pi_1 = \frac{1}{2}\pi_0$)
e. $\pi_1 = \frac{2}{3}\pi_0$	$f. \pi_1 = \frac{4}{3}\pi_0$	g. $\pi_1 = 2\pi_0$	h. None of t	he above
<u>b</u> 7. The value of the stea	dy-state probability	π_0 is (choose neares	t value):	
a. 30%	b. 35% (33%)	c. 40%	d. 45%	e. 50%
f 55%	g. 60%	h. 65%	i. 70%	j. 75%
f 8. The average number	of machines which	are running is (choo.	se nearest value)):
a. 0.2	b. 0.4	c. 0.6	d. 0.8	e. 1.0
f. 1.2 (1.111)	g. 1.4	h. 1.6	i. 1.8	j. 2.0
\underline{J} 9. The utilization of the	e machine operator (i.e., the fraction of th	e time he is busy	y clearing jams) is
(choose nearest value):	_			
a. 20%	b. 25%	c. 30%	d. 35%	e. 40%
f. 45%	g. 50%	h. 55%	i. 60%	j. 65% (67%)

SOLUTIONS

<u>h</u> 10. The average number of jams per hour which the machine operator must clear is *(choose nearest value)*:

a. 0.5	b. 0.75	c. 1.0	d. 1.25	e. 1.5
f. 1.75	g. 2.0	h. 2.25 (2.222)	i. 2.5	j. 2.75
<u>c</u> 11. The average time	e (in minutes) betwee	en the jamming of a ma	chine until it is l	back in operation is
(choose nearest value)):			
a. 15	b. 20	c. 25	d. 30	e. 35
f. 40	g. 45	h. 50	i. 55	j. 60

Version B: A machine operator has the task of keeping two machines running. Each machine runs for an average of **30** minutes before it becomes jammed, requiring the operator's attention. When a machine jams, he spends an average of **15** minutes restoring the machine to running condition, unless both machines are jammed, in which case he works faster, clearing the jam in an average of **12** minutes.

 \diamond

Define a continuous-time Markov chain, with the state of the system being *the number of machines which are jammed*.

1-4. Specify (by letter) each of the transition rates:

$\lambda_0 = 4/hr$	$\lambda_1 = 2/hr$
$\mu_1 = 4/hr$	$\mu_2 = 5/hr$

<u>a</u> 5. Which equation is used to compute the steady-state probability π_0 ?

(a.)
$$\pi_{0} = \left(1 + \frac{\lambda_{0}}{\mu_{1}} + \frac{\lambda_{0}}{\mu_{1}} \times \frac{\lambda_{1}}{\mu_{2}}\right)^{-1} = \left(1 + \frac{4}{4} + \frac{4}{4} \times \frac{2}{5}\right)^{-1} = \left(\frac{12}{5}\right)^{-1} = \frac{5}{12} \Rightarrow \pi_{1} = \frac{5}{12}, \pi_{2} = \frac{1}{6}$$
(b.) $\pi_{0} = \frac{\lambda_{0}}{\mu_{1}} \times \left(\frac{\lambda_{1}}{\mu_{2}}\right)^{2}$

(c.)
$$\pi_0 = \frac{1 + \frac{\lambda_0}{\lambda_1}}{1 + \frac{\mu_1}{\mu_2}}$$
 (d.) $\pi_0 = \frac{1 + \lambda_0 + \lambda_0 \times \lambda_1}{1 + \mu_1 + \mu_1 \times \mu_2}$
 $\frac{\lambda_0}{1 + \frac{\lambda_0}{\mu_1}} = \frac{\lambda_0}{1 + \frac{\lambda$

(e.)
$$\pi_0 = \frac{\kappa_0}{\mu_1} \times \frac{\kappa_1}{\mu_2}$$
 (f). $\pi_0 = \left(1 + \frac{\kappa_0}{\mu_1} + \frac{\kappa_1}{\mu_2}\right)$

(h.) *None of the above*

<u>e</u> 6. What is the relationship between π_0 and π_1 for this system?

a. $\pi_1 = \frac{1}{4}\pi_0$ b. $\pi_1 = \frac{1}{3}\pi_0$ c. $\pi_1 = \frac{1}{2}\pi_0$ d. $\pi_1 = \frac{2}{3}\pi_0$ e. $\pi_1 = \pi_0$ f. $\pi_1 = 2\pi_0$ g. $\pi_1 = 3\pi_0$ h. None of the above <u>c</u> 7. The value of the steady-state probability π_0 is (choose nearest value): a. 30% b. 35% c. $\frac{40\% (41.66\%)}{40\% (41.66\%)}$ d. 45% e. 50%

SOLUTIONS

f 55%	g. 60%	h. 65%	i. 70%	j. 75%
\underline{f} 8. The average number	er of machines whic	h are running is (cho	oose nearest value):
a. 0.2	b. 0.4	c. 0.6	d. 0.8	e. 1.0
f. 1.2 (1.25)	g. 1.4	h. 1.6	i. 1.8	j. 2.0
i 9. The utilization of the machine operator (i.e., the fraction of the time he is busy clearing jams) is				
<i>(choose nearest value)</i>				
a. 20%	b. 25%	c. 30%	d. 35%	e. 40%
f. 45%	g. 50%	h. 55%	i. 60% (58.3	33%) j. 65%
<u>i</u> 10. The average number	er of jams per hour v	which the machine o	perator must clear	is (choose nearest
value):				
a. 0.5	b. 0.75	c. 1.0	d. 1.25	e. 1.5
f. 1.75	g. 2.0	h. 2.25	i. 2.5	j. 2.75
<u>b</u> 11. The average time (in minutes) between	n the jamming of a n	nachine until it is b	back in operation is
(choose nearest value):				
a. 15	b. 20 (18)	c. 25	d. 30	e. 35
f. 40	g. 45	h. 50	i. 55	j. 60

h. 50 g. 45 i. 55 ~~~~~~~~~~

Version C: A machine operator has the task of keeping two machines running. Each machine runs for an average of **60** minutes before it becomes jammed, requiring the operator's attention. When a machine jams, he spends an average of 20 minutes restoring the machine to running condition, unless both machines are jammed, in which case he works

faster, clearing the jam in an average of 15 minutes. Define a continuous-time Markov chain, with the state of the system being the number of machines which are jammed.

1-4. Specify (by letter) each of the transition rates:

$$\begin{array}{ll} \lambda_0 = 2/hr & \lambda_1 = 1/hr \\ \mu_1 = 3/hr & \mu_2 = 4/hr \end{array}$$

<u>f</u> 5. Which equation is used to compute the steady-state probability π_0 ?

(a.)
$$\pi_{0} = \left(1 + \frac{\lambda_{0}}{\mu_{1}} + \frac{\lambda_{1}}{\mu_{2}}\right)^{-1}$$
(d.)
$$\pi_{0} = \frac{\lambda_{0}}{\mu_{1}} \times \left(\frac{\lambda_{1}}{\mu_{2}}\right)^{2}$$
(e.)
$$\pi_{0} = \frac{1 + \frac{\lambda_{0}}{\lambda_{1}}}{1 + \frac{\mu_{1}}{\mu_{2}}}$$
(f).
$$\pi_{0} = \left(1 + \frac{\lambda_{0}}{\mu_{1}} + \frac{\lambda_{0}}{\mu_{1}} \times \frac{\lambda_{1}}{\mu_{2}}\right)^{-1} = \left(1 + \frac{2}{3} + \frac{2}{3} \times \frac{1}{4}\right)^{-1} = \left(\frac{11}{6}\right)^{-1} = \frac{6}{11} \Rightarrow \pi_{1} = \frac{2}{3}\pi_{0} = \frac{4}{11}, \pi_{2} = \frac{1}{6}\pi_{0} = \frac{1}{11}$$

56:171 O.R. Quiz#9

(h.) *None of the above*

<u>e</u> 6. What is the relationship between π_0 and π_1 for this system?

	-	-			
	a. $\pi_1 = \pi_0$	b. $\pi_1 = \frac{1}{4}\pi_0$	c. $\pi_1 = \frac{1}{3}\pi_0$	d. $\pi_1 = \frac{1}{2}\pi_0$)
	e. $\pi_1 = \frac{2}{3}\pi_0$	f. $\pi_1 = 2\pi_0$	g. $\pi_1 = 3\pi_0$	h. None of t	the above
f 7 The	e value of the steady-	state probability π_0	is (choose nearest	value) [.]	
_ <u>_</u>	a. 30%	b. 35%	c. 40%	d. 45%	e. 50%
	f 55% (54.54%)	g. 60%	h. 65%	i. 70%	j. 75%
<u>f</u> 8. Th	e average number of	machines which are	e running is <i>(choos</i>	e nearest value,):
	a. 1.0	b. 1.1	c. 1.2	d. 1.3	e. 1.4
	f. 1.5 (1.4545)	g. 1.6	h. 1.7	i. 1.8	j. 1.9
<u>f</u> 9. Th	e utilization of the m	achine operator (i.e.	, the fraction of the	e time he is bus	y clearing jams) is
(choose	nearest value):				
	a. <u>20%</u>	b. 25%	c. 30%	d. 35%	e. 40%
	f. 45% (45.45%)	g. 50%	h. 55%	i. 60%	j. 65%
<u>e</u> 10. Th	e average number of	jams per hour whic	h the machine ope	rator must clear	is (choose nearest
value):					
	a. 0.5	b. 0.75	c. 1.0	d. 1.25	e. 1.5 (1.4545)
	f. 1.75	g. 2.0	h. 2.25 i	. 2.5	j. 2.75
<u>b or c</u> 11. '	The average time (in	minutes) between th	ne jamming of a ma	achine until it is	back in operation is
(choose	nearest value):			1.00	
	a. 15	b. 20 (22.5)	c. 25	d. 30	e. 35
	f. 40	g. 45	h. 50	1. 55	j. 60
		•	><><><><><><><><><><><><><><><><><><><	<>	
	The follo	wing are comn	non to version	IS A, B, & C	:
<u>d</u> 12. 1	For a continuous-tim	e Markov chain, let	Λ be the matrix of	transition proba	abilities. The sum of
ead	ch				
a.	column is 1	c. row is 1	NO		
D.	column is 0	d. row is 0	e. NO		1.
<u>d</u> 13. 1	In a birth/death proce	ess model of a queue	e, the time between	departures is a	ssumed to
a. n	ave the Beta dist n	c. be co	nstant	e. h	ave the uniform dist n
D. N	lave the Poisson dist $\frac{1}{1}$	n d. nave	the exponential dis	st n 1. A	IOTA
<u> </u>	In an $M/M/1$ queue, 1	If the arrival rate = λ	$\lambda < \mu =$ service rate,	then	4 1 4 1 4
a.	$\pi_0 = 1$ in steady stat	e c. $\pi_1 > 0$ ic	or all 1	e. the queue is n	ot a birth-death process
b.	no steady state exist	s d. $\pi_0 = 0$ i	in steady state f	f. <i>NOTA</i>	
True (+) of	r false (o)?				
<u>+</u> 15. Th	e continuous-time M	arkov chain on the p	previous page is a b	oirth/death proc	ess.
<u>o</u> 16. Lit	tle's Law for queues	is valid only if the c	ueue is a birth/dea	th process.	
17 4	1' / T'//1 ' T			1.	

<u>+</u> 17. According to Little's Law, the average arrival rate is the ratio of average number of customers in the system to the average time per customer, i.e., $\lambda = L/W$.

<u>+</u> 18. Little's Law for queues is valid for *every* queue which is a continuous-time Markov chain. *Note: it is valid for other queues as well!*