

Note: For your convenience, the (X_1, X_2) coordinates of the points labeled above are:

Point	Α	В	С	D	E	F	G	Н
X_1	0	0	4	2	0	1.2	5	6
X_2	6	3	2	6	0	4.8	0	0

4. Which of the three matrices below (each of which are *row-equivalent* to A) is the result of a "pivot" in matrix A? (*If more than one answer is correct, only one answer is required.*)

	1	1	-1]		0	-1	-2]	ſ	$\frac{1}{2}$	0	$-\frac{1}{2}$	[-1	0	0]
A =	1	2	1	, <i>B</i> =	1	2	1	, <i>C</i> =	$\frac{1}{2}$	1	$\frac{1}{2}$, <i>D</i> =	1	2	1
	2	-1	1		0	3	3		-1	0	0		3	-3	0

____5. Which method of solving a system of linear equations requires more row operations? a. Gauss elimination b. Gauss-Jordan elimination c. Both require same number Version A

Solutions

- 1. The feasible region has 3 corner points, namely D, F, & H
- 2. At point **F**, the slack (or surplus) variable for constraint # <u>2</u> is positive. (If more than one such variable is positive, only one is required.)

3. The optimal solution is at point ____F____

Note: For your convenience, the (X_1, X_2) coordinates of the points labeled above are:

Point	Α	В	С	D	E	F	G	Н
X1	0	0	4	2	0	1.2	5	6
X_2	6	3	2	6	0	4.8	0	0
Obj.				18		13.2		18

4. Which of the three matrices below (each of which are *row-equivalent* to A) is the result of a "pivot" in matrix A? (*If more than one answer is correct, only one answer is required.*) <u>B</u>

	[1	1	-1]	Ę	0	-1	-2]		$\frac{1}{2}$	0	$-\frac{1}{2}$		-1	0	0]
A =	1	2	1	, <i>B</i> =	1	2	1	, <i>C</i> =	1/2	1	1	, D =	1	2	1
	2	-1	1	L	0	3	3		-1	0	0		3	-3	0

<u>b</u> 5. Which method of solving a system of linear equations requires more row operations? a. Gauss elimination b. Gauss-Jordan elimination c. Both require same number

page 1 of 1

4. Which of the three matrices below (each of which are *row-equivalent* to A) is the result of a "pivot" in matrix A? (*If more than one answer is correct, only one answer is required.*)

	[1]	1	-1]	[0	3	0]		$\left[\frac{3}{2}\right]$	0	$-\frac{3}{2}$	[-1	2	0]
A =	-1	2	1	, <i>B</i> = 1	-2	-1	, C =	$-\frac{1}{2}$	1	$\frac{1}{2}$, D = -1	2	1
	2	1	1	0	3	-1]		$-\frac{3}{2}$	0	$\frac{1}{2}$	1	-1	0

____5. Which method of solving a system of linear equations requires more row operations? a. Gauss elimination b. Gauss-Jordan elimination c. Both require same number Version B

Solutions

- 1. The feasible region has 3 corner points, namely C, D, & F
- 2. At point **F**, the slack (or surplus) variable for constraint # <u>2</u> is positive. (If more than one such variable is positive, only one is required.)
- 3. The optimal solution is at point <u>D</u>

Note: For your convenience, the (X_1, X_2) coordinates of the points labeled above are:

Point	Α	В	С	D	E	F	G	Н
X ₁	0	0	4	2	0	1.2	5	6
X_2	6	3	2	6	0	4.8	0	0
Obj.			16	18		13.2		

4. Which of the three matrices below (each of which are *row-equivalent* to A) is the result of a "pivot" in matrix A? (*If more than one answer is correct, only one answer is required.*) <u>C</u>____

$$A = \begin{bmatrix} 1 & 1 & -1 \\ -1 & 2 & 1 \\ -2 & 1 & 1 \end{bmatrix}, B = \begin{bmatrix} 0 & 3 & 0 \\ 1 & -2 & -1 \\ 0 & 3 & -1 \end{bmatrix}, C = \begin{bmatrix} \frac{3}{2} & 0 & -\frac{3}{2} \\ -\frac{1}{2} & 1 & \frac{1}{2} \\ -\frac{3}{2} & 0 & \frac{1}{2} \end{bmatrix}, D = \begin{bmatrix} -1 & 2 & 0 \\ -1 & 2 & 1 \\ -1 & -1 & 0 \end{bmatrix}$$

<u>b</u>5. Which method of solving a system of linear equations requires more row operations? a. Gauss elimination b. Gauss-Jordan elimination c. Both require same number

0.R. Quiz #1

page 1 of 1

Point	Α	в	С	D	E	F	G	H
X_1	0	0	4	2	0	1.2	5	6
X_2	6	3	2	6	0	4.8	0	0

4. Which of the three matrices below (each of which are *row-equivalent* to A) is the result of a "pivot" in matrix A? (*If more than one answer is correct, only one answer is required.*)

$A = \begin{bmatrix} 2 & 1 & -1 \\ -1 & 2 & 1 \\ -2 & 1 & 1 \end{bmatrix}, B = \begin{bmatrix} 0 & 2 & 0 \\ 1 & -2 & -1 \\ 0 & -3 & -1 \end{bmatrix}, C =$	$\frac{3}{2}$ $-\frac{1}{2}$ -4	0 1 0	$\frac{-3}{2}$ $\frac{1}{2}$ 2	, <i>D</i> =	1 -1 -1	3 2 -1	$\begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$
--	---------------------------------------	-------------	--------------------------------------	--------------	---------------	--------------	---

_____5. Which method of solving a system of linear equations requires more row operations? a. Gauss elimination b. Gauss-Jordan elimination c. Both require same number Version C Solutions $56:171 \text{ Operations Research} \\ \text{Quiz #1 Solutions - 6 September 2002}$ Consider the following LP: $Maximize \ 3X_1 + 2X_2 \\ \text{subject to} \quad (1) \quad 2X_1 + X_2 \le 10 \\ (2) \quad -3X_1 + 2X_2 \le 6 \\ (3) \quad X_1 + X_2 \le 6 \\ X_1 \ge 0 \& X_2 \ge 0$

- 1. The feasible region has 5 corner points, namely B, C, E, F & G
- 2. At point C, the slack (or surplus) variable for constraint # <u>1</u> is positive. (If more than one such variable is positive, only one is required.)
- 3. The optimal solution is at point <u>C</u>

Note: For your convenience, the (X_1, X_2) coordinates of the points labeled above are:

Point	Α	В	С	D	E	F	G	Н
X1	0	0	4	2	0	1.2	5	6
X_2	6	3	2	6	0	4.8	0	0
Obj.		6	16		0	13.2	15	

4. Which of the three matrices below (each of which are *row-equivalent* to A) is the result of a "pivot" in matrix A? (*If more than one answer is correct, only one answer is required.*) D

<i>A</i> =	2 -1 -2	1 2 1	-1 1 1	$,B = \begin{bmatrix} 0\\ 1\\ 0 \end{bmatrix}$	2 -2 -3	$\begin{bmatrix} 0 \\ -1 \\ -1 \end{bmatrix}, C$	$C = \begin{vmatrix} 5/2 \\ -1/2 \\ -4 \end{vmatrix}$	0 1 0	$-\frac{3}{2}$ $\frac{1}{2}$ 2	$, D = \begin{bmatrix} 1 \\ -1 \\ -1 \end{bmatrix}$	3 2 -1	0 1 0
	L -		- 1	L°		- 1	-4	0	4	L		٦.

<u>b</u> 5. Which method of solving a system of linear equations requires more row operations? a. Gauss elimination b. Gauss-Jordan elimination c. Both require same number

0.R. QUÍZ #1

page 1 of 1

0.R. Quíz #1

Fage 1 of 1