56:271 Nonlinear Programming Quiz #4 – Fall 2003

Consider the minimization problem:

Minimize
$$f(x) = x_1$$

subject to

$$\begin{cases} g_1(x) = \frac{1}{2} x_1 - x_2 + 1.25 \le 0 \\ g_2(x) = (x_1 - 3)^2 + (x_2 - 3)^2 - 4 \le 0 \end{cases}$$

with feasible region as shown:

	X_1	X_2		
Α	1.006	1.753		
В	1	3		
С	3	5		
D	4.877	3.689		
E	3	3		

To answer the questions below, you need not compute the gradients you need only to estimate them.

1. Insert "+" or "-" in the blanks below:

$$L(x_1, x_2, \lambda_1, \lambda_2) = x_1 \underline{\qquad} \lambda_1 \left(\frac{1}{2} x_1 - x_2 + 1.25 \right) \underline{\qquad} \lambda_2 \left((x_1 - 3)^2 + (x_2 - 3)^2 - 4 \right)$$

and indicate any sign restrictions for the Lagrangian multipliers (λ)

λ1:	nonpositive	nonnegative	not restricted in sign
λ_2 :	nonpositive	nonnegative	not restricted in sign

- 2. At each of the points A, B, C, & D, indicate
 - the *steepest descent* direction and
 - the gradients of the *tight* constraints.
- 3. Which of the 5 points above are stationary points of the Lagrangian function for this problem? ? (circle) A B C D E
- 4. Which of the 5 points above satisfy the Karush-Kuhn-Tucker conditions for this problem? *(circle)* A B C D E