\qquad

56:271 Nonlinear Programming

Quiz \#4 - Fall 2003
Consider the minimization problem:

$$
\text { Minimize } f(x)=x_{1}
$$

subject to

$$
\left\{\begin{array}{l}
g_{1}(x)=1 / 2 x_{1}-x_{2}+1.25 \leq 0 \\
g_{2}(x)=\left(x_{1}-3\right)^{2}+\left(x_{2}-3\right)^{2}-4 \leq 0
\end{array}\right.
$$

with feasible region as shown:

	X_{1}	X_{2}
A	1.006	1.753
B	1	3
C	3	5
D	4.877	3.689
E	3	3

To answer the questions below, you need not compute the gradientsyou need only to estimate them.

1. Insert "+" or "-" in the blanks
 below:

$$
L\left(x_{1}, x_{2}, \lambda_{1}, \lambda_{2}\right)=x_{1} \ldots \lambda_{1}\left(1 / 2 x_{1}-x_{2}+1.25\right) _\lambda_{2}\left(\left(x_{1}-3\right)^{2}+\left(x_{2}-3\right)^{2}-4\right)
$$

and indicate any sign restrictions for the Lagrangian multipliers (λ)

$\lambda_{1}:$		
$\lambda_{2}:$	__nonpositive	nonpositive

2. At each of the points $A, B, C, \& D$, indicate

- the steepest descent direction and
- the gradients of the tight constraints.

3. Which of the 5 points above are stationary points of the Lagrangian function for this problem? ? (circle) A B C D E
4. Which of the 5 points above satisfy the Karush-Kuhn-Tucker conditions for this problem?
(circle) A B C D E
