\qquad

56:271 Nonlinear Programming

Quiz \#1
$\left.\left.\left.\langle\langle\bullet\rangle\rangle\left\langle\left\langle_{\bullet}\right\rangle\right\rangle\langle\langle\bullet\rangle\rangle\left\langle\iota_{\bullet}\right\rangle\right\rangle\langle\langle\bullet\rangle\rangle\left\langle\iota_{\bullet}\right\rangle\right\rangle\langle\langle\bullet\rangle\rangle\left\langle\iota_{\bullet}\right\rangle\right\rangle\langle\langle\bullet\rangle\rangle$
Indicate whether true (+) or false (o). If false, briefly explain why, or give a counterexample.

1. Cholesky factorization of a matrix A requires that A be symmetric.
2. A pivot matrix is a product of elementary matrices.
3. Given an LU factorization of the matrix A, the equation $A x=b$ (for any given vector b) may be solved by first backward substitution followed by forward substitution.
4. If $E_{1}, E_{2}, \ldots E_{k}$ are the elementary matrices corresponding to the k elementary row operations required for Gaussian elimination of matrix A , then the matrix product $\left(\mathrm{E}_{1} \mathrm{E}_{2} \ldots \mathrm{E}_{\mathrm{k}}\right) \mathrm{A}$ is an echelon matrix.
5. If E is an elementary matrix and A is a matrix of the same dimensions, then the product EA yields the same result as performing the corresponding elementary row operation on the matrix A .
6. The inverse of an elementary matrix is also an elementary matrix.
7. An echelon matrix must be square.
8. Gauss-Jordan elimination is a more efficient method for solving $A x=b$ (for a specific b) than is Gauss elimination with backsubstitution.
\qquad 9. The inverse of a lower triangular elementary matrix is upper triangular.
9. Given an $L U$ factorization of the matrix A, the equation $A x=b$ (for any given vector b) may be solved by first solving $\mathrm{Ly}=\mathrm{b}$ for vector y and then $\mathrm{Ux}=\mathrm{y}$ for vector x .
10. If E is an elementary matrix and A is a matrix of the same dimensions, then $\mathrm{EA}=\mathrm{AE}$.
11. Use forward \& backward substitution (in the proper order) to solve the equation $L U x=b$, where

$$
L=\left[\begin{array}{ccc}
1 & 0 & 0 \\
-2 & 2 & 0 \\
1 & 0 & 1
\end{array}\right], U=\left[\begin{array}{ccc}
1 & -1 & 0 \\
0 & 1 & 1 \\
0 & 0 & 2
\end{array}\right], b=\left[\begin{array}{l}
3 \\
6 \\
5
\end{array}\right] \quad \mathrm{X}_{1}=_, \mathrm{X}_{2}=\ldots, \mathrm{X}_{3}=
$$

13. Which of the following is the result of a pivot in the upper left corner of the matrix

$$
\begin{aligned}
& {\left[\begin{array}{ccc}
1 & 1 & 2 \\
1 & 2 & 1 \\
2 & -1 & 1
\end{array}\right] ?} \\
& A=\left[\begin{array}{ccc}
1 & 1 & 2 \\
0 & 1 & -1 \\
0 & -3 & -3
\end{array}\right], B=\left[\begin{array}{ccc}
1 & 1 & 2 \\
1 & 5 / 2 & -1 \\
0 & -3 & -3
\end{array}\right], C=\left[\begin{array}{ccc}
1 & 1 & 2 \\
0 & 1 & -1 \\
0 & -5 & -1
\end{array}\right]
\end{aligned}
$$

(Note: All three can be obtained by row transformations, but only one is the result of a pivot!)

