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CHOLESKY FACTORIZATION

Suppose that A is a symmetric & positive definite matrix. 

Then the Cholesky factorization of A is

ˆ T̂A L L=
where L̂ is a lower triangular matrix.

Computation:
Suppose that we have the factorization

TA L D L=
Then if 0i

iD ≥ , we can define a new diagonal matrix D̂ where
ˆ i i
i iD D≡

Then ( ) ( )ˆ ˆ ˆ ˆ ˆ ˆTT T TA L D L L D D L LD LD L L= = = = where ˆ ˆL LD=
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Example:

We wish to find the Cholesky factorization of the matrix

2 0 1
0 1 1
1 1 2

A
 
 =  
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Cholesky factorization…
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The lower triangular matrix L is found by performing (on the

identity matrix) the inverse of the row operations used to reduce

the A matrix:

3 3 1

3 3 2

1 0 01
2 0 1 0

1 1 12

R R R
L

R R R

 
 ← + ⇒ =  
 ← + 
  

We now have the LU factorization of matrix A:

1 0 0 2 0 1
0 1 0 0 1 1
1 11 1 0 02 2

A LU

   
   

= =    
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Define the diagonal matrix D:

1

1 0 02 0 0 2
0 1 0 0 1 0

1 0 0 20 0 2

D D−

  
  
 = ⇒ = 
  
     

Note that

1

1 0 0 2 0 12
ˆ 0 1 0 0 1 1

0 0 2 10 0 2
11 0 2

0 1 1
0 0 1

U D U−

   
   
 = =  
   
     

 
 
 =
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And so,

11 01 0 0 2 0 0 2
0 1 0 0 1 0 0 1 1
1 1 0 0 11 1 0 02 2

TA LDL

    
    
 = =    
    
         



Solving Linear Eqns 8/26/2003 page 43

Define the diagonal matrix D̂ where ˆ i i
i iD D≡ :

2 0 0
ˆ 0 1 0

10 0
2

D

 
 
 =
 
 
 

Then compute
1 0 0 2 0 0 2 0 0

ˆ ˆ 0 1 0 0 1 0 0 1 0
1 1 1 11 1 0 0 12 2 2 2

L LD

    
    
   = = = 
    
         

So the Cholesky factorization is

12 02 0 0 2
ˆ ˆ 0 1 0 0 1 1

1 1 11 0 0
2 2 2

TA LL

  
  
  = =
  
  
    


