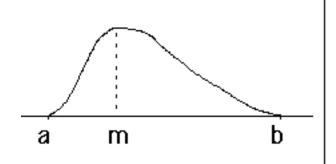


D.L.Bricker, Dept of IE, U of IA

One of the shortcomings of CPM is the assumption that the durations of activities are deterministic, i.e., known with certainty.

PERT assumes that the duration of each activity is a random variable with known mean and standard variation, and derives a probability distribution for the project completion time.

Assumptions of PERT:


- the duration of an activity is a random variable with BETA distribution
- the durations of the activities are statistically independent
- the critical path (computed assuming expected values of the durations) always requires a longer total time than any other path
- the Central Limit Theorem can be applied so that the sum of the durations of the activities on the critical path has approximately a NORMAL distribution

D.L.Bricker, Dept of IE, U of IA

©copyright 1997

The BETA distribution

is unimodal with finite endpoints

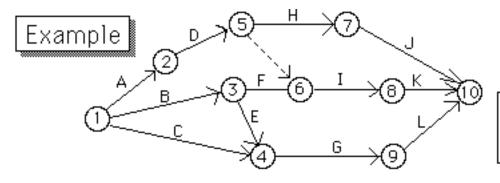
Mean:
$$\mu = \frac{a + 4m + b}{6}$$

Standard deviation:

$$\sigma = \frac{b-a}{6}$$

(can be skewed either to right or left) The user provides estimates of the parameters for each activity:

a: the optimistic estimate of completion time


b: the pessimistic estimate of completion time

m: estimate of the most likely completion time

From these parameters, the expected value and standard deviation of each activity's duration is computed.

D.L.Bricker, Dept of IE, U of IA

©copyright 1997

а	<i>optimistic</i>
m	most likelu

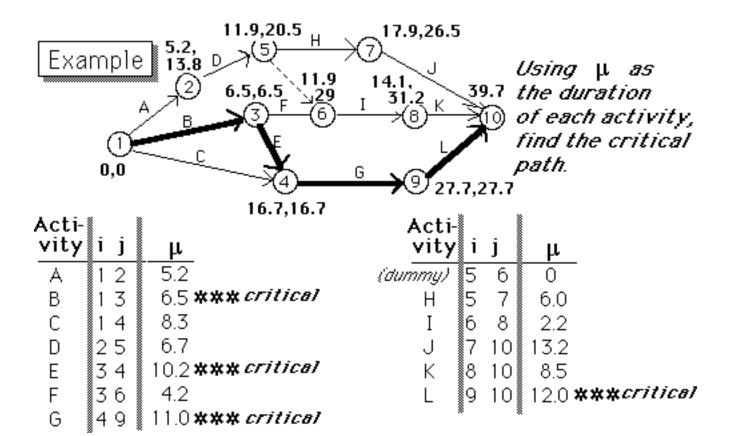
b	pessimistic
---	-------------

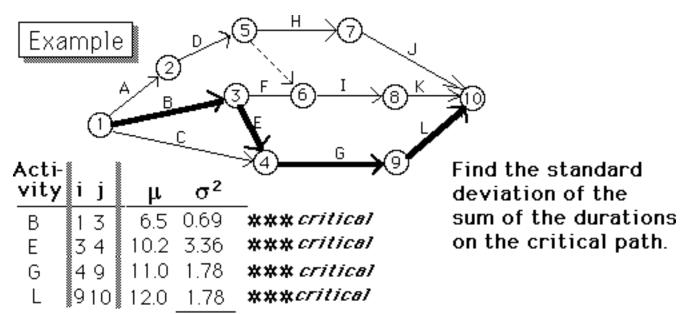
Acti					
vity	1	J	a	m	_b_
Α	1	2	3	5	8
В	1	3	5	6	10
С	1	4	6	8	12
D	12	5	4	6	12
Ε	3	4	5	10	16
F	3	б	3	4	6
G	4	9	7	11	15

Acti vity		j a	m	b
(dummy)	5	6 0	0	0
Н	5	7 2	6	10
I	6	8 1	2	4
J	7	10 11	13	16
K	8	10 4	8	15
L	9	10 8	12	16

Exampl	е

a optimistic m most likely


b pessimistic


Calculate |

$$\mu = \frac{a+4m+b}{6}$$

$$\sigma = \frac{b-a}{6}$$

	Acti-							_	
	vity	i 1 1 1 2 3 3 4 5 5 6 7 8 9	j 23454696781010	а	m	8 10 12 16 15 10 4 16 15 16	μ	σ^2	
	A	1	2	3	5	8	5.2	0.69	
7	В	1	2	5	6	10	6.5	0.69	
	С	1	4	6	8	12	8.3	1.00	
	D	2	5	4	6	12	6.7	1.78	
	Ε	3	4	5	10	16	10.2	3.36	
	F	3	6	3	4	6	4.2	0.25	
	G	4	9	7	11	15	11.0	1.78	
idi	ummy)	1 5	6	0	0	0	0	0	
	Н	1 5	7	2	6	10	6.0	1.78	
	I	6	8	1	2	4	2.2	0.25	
	J	7	10	11	13	16	13.2	0.69	
	K	8	10	4	8	15	8.5	3.36	
	L	1 9	10	8	12	16	12.0	1.78	

sum: 7.61

$$\sigma_{\tau} = \sqrt{7.61}$$
$$= 2.759$$

The completion time for the project is N(39.7, 2.759)

(Normal dist'n with mean 39.7 and std. deviation 2.759)

©copyright 1997

The expected completion time of the project is 39.7 days.

What is the probability that it is completed within 42 days?

$$P\{T \le 42\} = P\{\frac{T-39.7}{2.759} \le \frac{42-39.7}{2.759}\} = P\{X \le 0.8336\}$$

= 79 % standard N(O,1)

DISTRIBUTION)

PFRT

Assumptions of PERT:

- durations of activities are INDEPENDENT random variables with BETA distributions
- the critical path when durations are the mean values is ALWAYS the critical path
- the number of activities on the critical path is large enough to invoke the CENTRAL LIMIT THEOREM (i.e., completion time has a NORMAL

