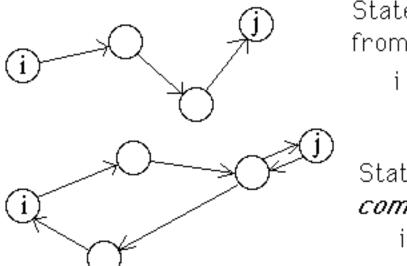
Classification of States of a Markov chain

This Hypercard stack was prepared by: Dennis L. Bricker, Dept. of Industrial Engineering, University of Iowa, Iowa City, Iowa 52242 e-mail: dbricker@icaen.uiowa.edu A state i is *recurrent* if, given that the Markov chain starts in state i, the probability that it eventually returns to state i is one.

i.e.,
$$\sum_{n=1}^{\infty} f_{ii}^{(n)} = 1$$

 $f_{ij}^{(n)}$ = Probability that the first visit to state **j** occurs at stage **n**, given that the initial state is **i**.

A state which is not recurrent is said to be transient.

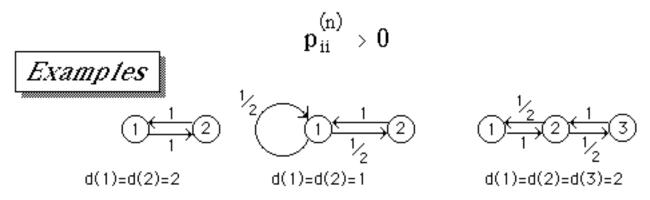


State j is *reachable* from state i $i \longrightarrow j$

States i & j *communicate* i↔j

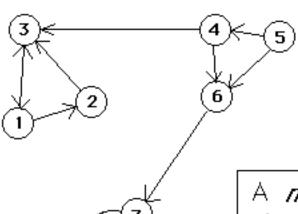
If state i is recurrent, and states i & j communicate, then state j is recurrent.

The *period* d(i) of state i is the greatest common divisor of all the integers $n \ge 1$ for which



If $i \leftrightarrow j$, then d(i)=d(j).

A Markov chain with d(i)=1 for all i is called aperiodic



A set of states is *closed* if no state not in the set is reachable from a state in the set

A *minimal closed set* is a closed set which has no closed proper subsets.

The closed sets are

 $\{ f \}$

both these closed sets are minimal/

A minimal closed set is said to be *irreducible*.

A Markov chain is called *irreducible* if the set of its states is a minimal closed set.

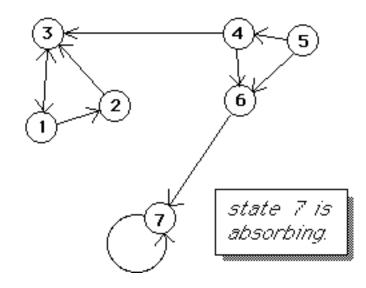
(A Markov chain is *irreducible* if and only if every pair of its states communicate.)

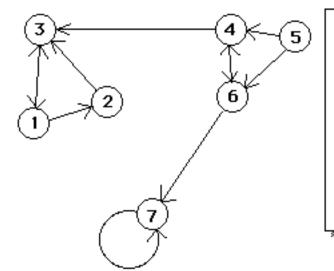
A state which forms a closed set, i.e., which cannot reach another state, is said to be **absorbing**.

If state j is absorbing, then

$$\mathbf{p}_{jj} = \mathbf{p}_{jj}^{(n)} = 1$$

for all n=1, 2, ...





In a Markov chain with finitely many states, a member of a minimal closed set is *recurrent* and other states are *transient*

States 1,2,3, & 7 are recurrent.

If state j is recurrent, but

$$\lim_{n\to\infty} \mathbf{p}_{ij}^{(n)} = \mathbf{0}$$
 for any state i,

then state j is said to be null.

An irreducible Markov chain with *finitely* many states has

- no recurrent null states
- no transient states

Absorption Analysis

Consider a Markov chain with N states:

- r absorbing states
- s = N-r transient states

Partition the transition probability matrix P:

$$P = \begin{bmatrix} I & 0 \\ R & Q \end{bmatrix} \begin{cases} r & rows \\ s & rows \end{cases}$$
columns columns

The Powers of P

$$P = \begin{bmatrix} I & 0 \\ R & Q \end{bmatrix}$$

$$P^{2} = \begin{bmatrix} I & 0 \\ R+QR & Q^{2} \end{bmatrix}, \qquad P^{3} = \begin{bmatrix} I & 0 \\ R+QR+Q^{2}R & Q^{3} \end{bmatrix}$$

$$P^{n} = \begin{bmatrix} I & 0 \\ (I+Q+Q^{2}+...+Q^{n-1})R & Q^{n} \end{bmatrix}$$

$$transient$$

$$transient$$

Let states i & j both be transient, and define

 \mathbf{e}_{ij} = expected # of visits to state j, given that the system begins in state i (counting initial visit if i=j)

$$\mathbf{e}_{ij} = \sum_{n=0}^{\infty} \mathbf{p}_{ij}^{(n)}$$

and the $r \times r$ matrix:

$$E = \sum_{n=0}^{\infty} Q^{n} = (I - Q)^{-1}$$

since
$$(I-Q)(I+Q+Q^2+...)=I+Q-Q+Q^2-Q^2+...=I$$

Absorption probability

Let state i be transient and state j absorbing, and define:

a_{ij} = probability that the system enters the absorbing state j at some future time, given that it is initially in transient state i

$$\mathbf{a_{ij}} = \sum_{\mathbf{n}=1} \mathbf{f_{ij}^{(n)}}$$

absorption probability (an infinite sum)

An alternate method for computing these probabilities:

Condition on the state entered at stage #1:

$$a_{ij} = \sum_{k=1}^{N} P\{\text{system enters state } j | X_1 = k\} P\{X_1 = k\}$$

=
$$P\{system enters state j | X_1 = j\} P\{X_1 = j\}$$

+
$$\sum_{k \text{ absorbing}, \neq j} P\{\text{system enters state } j \mid X_1 = k\} P\{X_1 = k\}$$

$$+\sum_{k \text{ transient}} P\{\text{system enters state } j \mid X_1 = k\} P\{X_1 = k\}$$

$$= 1p_{ij} + 0 + \sum_{k=1}^{s} a_{kj} p_{ik}$$

$$\mathbf{a}_{ij} = \mathbf{p}_{ij} + \sum_{k=1}^{s} \mathbf{a}_{kj} \mathbf{p}_{ik}$$

$$a_{ij} = p_{ij} + \sum_{k=1}^{s} a_{kj} p_{ik}$$
 , i transient, j absorbing

In matrix form:

$$A = R + QA \quad \text{where} \quad P = \begin{bmatrix} I & 0 \\ R & Q \end{bmatrix}$$
 absorbing
$$A - QA = R$$

$$(I - Q)A = R$$
 absorbing transient
$$A = (I - Q)^{-1}R$$

$$A = ER$$