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A state 1 1§ recurrend if, given that the Markov
chain starts in state i, the probability that it
eventually returns to state 1 1S one.

i.e., Z [n} -

o

i = Probability that the first visit to state j ocours at. stage n,

given that the initial state is i

A state which is not recurrent is said to be
transrent.
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State | 15 reachable
from state |

| ]

States 1 & |
Communicale

pany

[f state 1 is recurrent, and states 1 & |
communicate, then state j is recurrent.
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The perfod dii) of state i is the greatest common
divisor of all the integers n: | for which

(n]
pi >0
Examples |
®‘:>® 1@ O S =©
d{1)=d(2)=2 d(1)=d{2)=1 di1)=d(2)=d(3)=2

If i « j, then d(i)=d(j).

A Markov chain with di(i)=1 for all i is called
aperiodie
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9

A set of states is closed |
if no state not in the set |
is reachable from a state |
in the set 5*

A minimal closed sef 15 3
closed set which has no closed
proper subsets.

i1,2,3,45,6,71 Bold these olosed
11,2,3) S SpiE mre il
11,2346 7

171
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A minimal closed sel is said to be irreducifiie.

A Markov chain is called irreducifzie 1f Lthe set of
1ts states is a minimal closed set.,

(A Markov chain is srreducitfe if and only if
every pair of its states communicate.)
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A state which forms a closed set, 1.e., which
cannot reach another state, 15 said to be gbsorbding.

3 4
f state j is absorbing, "9
then 0

(n) [
Pjj = Py =

for all n=1, 2, ...

stste 75 |

SEgor g
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3 4)~—(s) | InaMarkov chain with
' finitely many states,
e a member of a minimal

closed set is recurrent |
and other states are

fransienf

Sigies J 25 & 7
S PR
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It state | 1s recurrent, but

: (n)
lim p

N—7%F =2

=0 for any state 1,

then state | i1s said to be nets

An irreducible Markov chain with /nize/s many |

states has
# no recurrent null states

& N0 Lransient states

page
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[ Absorption Analvsis ]

Consider a Markov chain with N states:
¢  absorbing states
¢ s =NMN-r transient states
Partition the transition probability matriz P

p— |:Iﬂ:| } Fores

} a0 S
—_— =
£~ &

CO RTINS SIS
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The Powers of P | P:[I § U}

|

. —

LI PR— ﬂ _____ V absorting
(I+Q+Q +.. +Q ) Qn } LrEsaian

“\ ~ *«-__w__d_p'
ST drERaian?
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Let states i & j both be transient, and define

€y = expected * of visits to state j, given that

the system begins in state |
(L‘:Dunting initial visit if i=]J

(n)
HZ by
and the r x r matrix;
E=> Q" =(1-Q)
n=0

since (I1-Q) (I L0+ + .. ): [+OQ-Q+0°Q% ... =
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[ Absorption probability ]

Let state 1 be transient and state j absorbing,
and define:

a;; = probability that the system enters

the absorbing state | at some future time,
given that it is initially in transient state |

ghsarplion probabifily
(& ifinite sumi
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An alternate method for computing these

probabilities:
Lowrcrlroir o Bhe sisle anlarad 58 stsge F
N
aij = Pisystem enters state ] | wy =kt P =k}
k=1

= Fisystem enters state ] | A1 =11 FiEy=11
+ 2 Pisystemn enters state | | ny =ki Pixy =kl

k absorbing, #j
+ 2, Pisystem enters state j| ¥y =k} P{#;=k]

k transient

3
= 1P+ 0+ 2 aypy
k=1
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i maltrix form.

A=K + 0OA whee P= Iﬂ }Ef?;-‘?ﬁf‘ﬁ;ﬁg
} PrEnsisnt

A-GA =R S
[ = Q) A= R SHSHEINT  LrERsTan?

A=(I-Q7'R




