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Discrete-time Markov Chains

Discrete
lime
Markov
( hain

Hpn = state of system
at timme n

Transition Probabilities

8/23/00

Consider a systern with a finite set
of states: {s,,5;, . Syl

The svstemn is observed at a certain

sequence of points in time, or stages.

The svstemn mavy make a transition
from one state to another between
observations, according to known
probability distributions.

n-1.1

P P{Xp=j | Xy =1i]

i

&

page 3



Discrete-time Markov Chains 8/23/00 page 4

If the Markowv chain is ségfionar)y, then the
transition probabilities are the same at every
stage, 1.e.,

-1 . .
PE M= pij=P{Xp=j | Xy =)

Mode Whsl Wia slsis 88 sig8e g d
Sag s dapaedd OVEIF on fha sigis
A Mo ez laly procadiing
Shgoa o sl VT o gy asrfiar
LS OF Lhe TS,




iscrete-time Markov Chains

8/23/00

Notation |

llERERENEIRE

transition probability
n—-stage transition probability
steady-state probability
first-passage probability

first-passage Lime

mean first-passage time

&
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Example: Summer Weather

—— G IS S LSe Dy LT S e I SV g s -fo =g s
FERES & maanances
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sUppose that on Wednesday the weather is HOT.

What is the probability that on Saturday the weather is

sither MODERATE or COOLY

Eow 1 of the matriz P gives the
probability distribution of the
weather on Thursday:

What is the distribution of the
weather on Friday?

page 7



Discrete-time Markov Chains

8/23/00 page 8

Compute the probability that it is Cool on Friday by
conditioning on Thursday's weather:

P{Cool on Fridavy [Hot on Wednesday]

= PiCool Friday
+ PiCool Friday

+ Pi{Cool Fridaw

Hot Thursday =P{Hot Thursday | Hot Wed }
Moderate Thurs=P{Moderate Thurs | Hot Wed )

Cool Thursday =<P{Cool Thursday |HDt Wed )

- I:]111::'13 ¥ plzpza ¥ p13p33
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ey §

FPiCool on Friday |Hot on Wednesdayw} .MP.
I:313
- PR T RPy T RsR T [P“ P, PH} P,
row ol o
L p33 .
- [1/3:( 1/5) * (1/2:( 1/5) * (1/5:( 1/3) sfarmant i row o oofiums §
ar o

= 0.19444444

T proba bty of golng fros st FEFOT) o slade F foal)
i T stages fdays)
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In general, the probability that the svstern makes a
transition from state i to state j in 2 stages is

nn+d

Pij = Zpikpkj
K

which is the element in row i & column j of p?

(0.4167 0.3889 0.1944
P -|0.3889 0.4167 0.1944
0.3889 0.3889 0.2222
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[[Three —dlay Fn::-recast)]

) H M C _
; H| 0.39515 0.402758 0.19907
P =M 040278 0.39815 0.19907

C_U.39515 0.39815 0.2037

=0, if Wednesday is HOT, the probability that Saturday (three
davs hence) is Moderate is 040278,

and the probability that it is Cool is 0.1 9207

The utility company can be 60.185% certain, then, that
maturday will NOT be hot.

&
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‘l The Chapman-Folmogorov Equation I\

Let I].I._l = P{system is in state j at stage n,
given that system is in state j
initially}

Then () ey |
A Z Fr:' -t 1 forany ifj, and
P ” Pic Py . rsuchthat Odrén

(n)
f88 s Py & the fanar product of rowe Fr of BT

and codumr *7 of BT

&
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Long-Run
Behavior

of
Markov Chains




Discrete-time Markov Chains 8/23/00 page 14

A Markov chain iz regular if
there is some k such that its transition probability matriz P,
raised to the power k, has strictly positive elermnents only.

1.)," 1
30, i
AL PR N

42
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-
-

Not regular:
0 1] ‘

if n is even

it n1 is odd

Not regular:
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If a Markov chain is REGULAR, then

(; (n) o (rrdenardant of the
. JIPW Pi i &g Lutial state §
That is, N R
lim P = |[®™ Rz Ty
n— + oo
_El nz " nw EN_

The limiting probability n; is called a
steadVv-siate probabiirty
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Chapman- () ) (n-r)
Kolmogoroy Py = > Pi Py;
Equation: K

for any i&j, and
rsuch that Oirin
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Therefore, the limiting probabilities must
satisfy the conditions:

1) Smi=1
T

2) “_j = Z “iPij «—— i matriz form, m= N F
1

3) m;>0
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o= Pyl tpaltpait, T, is the product of T and

1 1 { column *2 of P
= /2E1+ /3112+ /3!1;3

==, —1/2n1+2/3n2—1/3n3=ﬂ

T3 = P1dle TPz TPl n. isthe productof n and

= 1/E-E1 + 1/6:':2 + 1/3 T, column 3 of P

== —%nl—%n2+%n3=ﬂ
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2 1 1
n,— /.- m.=0
/1/3 L /2 2 /3 3 This system of equations

is linearly dependent
< — 1/2“—1 + 2/3?53 - 1/3“3 =0 (the sum of the left sides

iz zerol)
— :l/ﬁnl— 1/6752+2/3n3=[}

We need also the equation m, +n,+7n,=1
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2/3?11 - 1/2?"12 - 1/3?53 =0 LHRCAr e AT e
of £he first thres
1 2 1 SIS S VES LIS
— R+ - S n.=0
) /2 1 /3 2 /3 3 8 SYSLany WL
Fatiat ol

T, 4w, +n.=1
e

The =olution: n, = 3/5

|| "Long Range Forecast” ||

That is, "in the long run”, surnmer days will be HOT or MODERATE
with probability 40% each, and COOL with probability Z20%.

2 1
o= ny=
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Example |

repair of two types of automobile engines: gasoline & diesel

The overhaul of a diesel engine requires two davs, while
the overhaul of a gasoline engine requires a single day.

Each rorning, the probability of receiving a diesel engine for
overhaulis pp = 5.

The probability of receiving a gasoline engine for overhaul is

D5 =2,
The profit per day for overhauling a diesel engine is $20, and
for a gasoline engine is §2.3,

&
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W ork which cannot be done on the day received is lost Lo
cornpetitor repair shops.

What is the best policy for accepting jobs?

e [fonly | dav's work is complete on a d1esel engine, any
jobs which arrive must be refused.

e Dtherwise, if only one engine tvpe is received, that job
shiould be accepted.

e [f not in the midst of overhauling a diesel engine, and BOTH
engine types arrive, we can

a) give preference to the DIESEL engine

or
b give preference to the GASOLINE engine

Fhich e the betffer choice?

( Solution )
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Markov Chain Model

Let's assume that the system (repair shop) is observed
at midday each day.

what are the possible states of the system?

(1) repair shop is idle
(2] first day of work on diesel engine 15 in progress
(3] second day of work on diesel engine is in progress

(4) work on gasoline engine is in progress

&
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Fransition Disgran |

(1) shopis idle

(2) day #*1 on diesel

(31 day *2 on diesel

(4 work on gasoline engine

what transrtions gre possibie?
What 1z the probasbilily of each {ransifion?



Discrete-time Markov Chains 8/23/00 page 27

1,/3 Fransilion Diggramy

(1) shopis idle

(2) day #*1 on diesel

(31 day *2 on diesel

(4 work on gasoline engine

Some transitions occur with probabilities which
are the same, whether preference is given Lo
diesel or gasoline engines,
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Aflerneiive A Give preferegnceg 1o diesel erginegs

L% }x (1) shopis idle
3 Yz (2) day *1 on diesel
(31 day *2 on diesel
| (<) work on gasoline engine

Probability of NO arrivals: (1-pg)i1-pg) = (1-15)(1-15) = 14

Pmbabﬂity that gasoline engine arrives, but no diesel:

(1 DDDG_ (1-1%] r”r(E = Vs
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Afternaiive A- Five preference ta diesel engines |

1 1 o |
/3 /3 /3 Slegdy-Siale Mistiriivtion
C o 1 0 :
P=1y, | -
550 | 025
1 1 1 2 025
550 5 025
4 025
Expectied profif-day:

Som+ Y20m,+ Y20m,+ %230, = $1575
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1;’

3 (1) shop is idle
1 p
Ve

A (23 day #1 on diesel
(31 day *2 on diesel
N (4} work on gasaline engine

Frobability that diesel engine arrives, but no gasoline engine:

ppll-pg! = WKO-1i=1




Discrete-time Markov Chains 8/23/00

/s o O

Ailernelive - Give preferene o gesaling engings

Slegdy-Siale Mistiriivtion

; 0 1 0 |
= 1 ﬂ-i
l l l
]/3 ]/5 ’ ]/? 1 0285714
i th o Y o
4 0428571

Expectied profif-day:

Som,+ $20m,+ $20m,+ %230, = Yis571413
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(a) Prefer | (b) Prefer

Folficy diesel gasoline
engine engine
Lapected 1575 | ¥15571413

prolit-day

The better policy 15 to accept the diesel engine when the
shop 15 ready for the next engine, and both types arrive.
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Example |
A Self-BService Elevator inafour-story

building operates solely according to the buttons pushed inside
the elevator. That 1s, a person on the outside cannot "call” the
elevator to the floor he where he 15, (Consequently, the only
way to get the elevatoris for someone else to get off at your
floor.)

Of the passengers entering the building at the first floor and
wishing to use the elevator, half go to the second floor and
the other half divides equally between the third and fourth floors.

Fassengers above the first floor want to go to the first floor in
0% of the cases. Otherwise, they are equally likely to want to
go to the other two floors, <:J__]
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[Questinﬂs]

® |f vou enter the building on the first floor,
what 15 the probability that you will find the elevator there?

® |f the elevatoris not at the first floor but at the second
floor, how many tripsis it expected to make before

returning to the first floor?



Discrete-time Markov Chains 8/23/00

page 35

Markov Chain Model

state 1

location of the elevator (1=1,2.3,4) at end of trip

St = tri b
ade n M umber fransition Frobabifities

to
from | 2 3 4

i [ 0o o5 o025 o025

2 0.2 0 0.1 01
3 0.8 01 0 01
2 02 01 0 0
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First Passage Time

Define the random variable

M. = the number of the stage at which the system,

1
] starting in state 1, firgd reaches state .




fol = propability that the system, starting
instate 1, will first reach state j
N exactly n steps

— D{ij: ni

Reoall a7 pi':j”:' IS 1hE nrohshiiiele HEl

SEACTING I SIEIE T, 108 S\SIEn 15 i 51518 ]

Ster 1 ("hwt perhans NOT ror the 1irst visitd)
|::> (computation)
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Computation of ffjﬂj

g
We express D].[j : by conditioning on the step, k, at which the

system first reaches state |

(n) N system in | system first system first
D= = E P{ state j at | reaches state }}c: P{ reaches state }
1] ot step n j at step k at step k

N
(n-k) (k]
=2 Py Ty
k=1
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Solfve Ffor f]-ijm:
|
() (h=k] [l ]
by = 2Py %
k=1

n-1
_ (n=k) (k) (0} ¢in

o @ g

i1
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Mecursive Compuiaiion.
Cormpute the powers of F, 1.e., p..

With F': - Pij - compute ﬂ-{-m

Then, kﬂawmg ﬂa} and f':E:' , Compute fm, etc.
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1z 3 4
1l o0 0.5 0.25 0.25 (1) |:1:|
2l o8 0 0.1 0.1 f21 = 0.8
3l 0.8 0.1 0 0.1
4| 0.8 0.1 0.1 0
(23 (2) (2= IZ|=:]I
p2 F21 = Poy Z P f
1 2 3 4 :DIIE:' _ mrm
| 8:5, 098 8:07° 8.7 g
3| 0.16 0.41 0.22 0.21 =0.16 -0.0=0.5
4| 0.16 0.41 0.21 0.22

=0.16
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i =08

21
(2]
fg1 =016
3 o
(20 _ (3] (Z-k) ~ (k)
1 2 3 4 oy =P ~ E§1D11 fo

1] 0,16 0,415 0.2125 0.2125 3 1 o
2 0,672 0.122 0,103 0.1073 = p{} — p“ﬂf;:l—paf fé1}
3l 00672 0,123 0,102 0.103 21 1
4l 0,672 0.123 0.103 0.102

= - 0672-08x0.8-00x0.16

= 0.032
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fo) =08

(23
r21 :D1E]
3
7= 0.032
I:]-'il
0.672 0.1225
0.2624 0.356A
0.2624 0.35A5
0.2624 0.35A5
W ) (3iei (2D 020 (103)
== Ty =y~ e Py o =Py,

=0.2624-0-08x0.16-0.16X0.8
= 0.0064
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Flevatar Example |

First Visit Probabilities
to State 1
from State 2

n F

1 0.8

2 0,16

3 0,032

4 0,00604
] 0,00128
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EFleyvator Exemple |

First Wisit Probabilities |
to State | !

from State 2

0.00128
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Mean First Passage Time |

my; = expected number of stage at which the
system, starting in state 1, first reaches state j

where
N]-j = the number of the stage at which the system,
starting in state 1, Frrsé reaches state J.
P(Nj; =n)=fi"

1]

1] <::| |:> (computation)
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Mear First Passage Time My = EM = X ﬂf?]_“:'

1]
n=1
Compuiaiion of m 1

{a) i)
n £y n fl:zi'
] 0.8 0.8
2 016 032
3 0032 0.096
4 0.0064 00256 EFleyelor Exempie |
5 000128 0.0064 '
& 0000256 0001536
7 00000512 000035584
& 0000002045 000005192

# |25
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Mearn First Passage Time My = ENh = 3 nfg;ﬂ

Analternative to computing this infinite sum:

BNt = 2 E{Nij| My = kixP{ ¥y = ki
k

= EINyj| #y =3} Pl = }+£j E{Nij‘ Wy = kixP{ ¥, = k)

L "\lr' & - L' '“|||" - — —
1 Fij | + E{Nkj} pik

= 1xpy; +£j [1+ENgH T py,
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ENij) = 1xpy; +k§j [ 1+ EMt Py,

E{Nl_]} = p]_] + Z.pﬂ{ + Z E{Nk]} p“{

. . k=] o ]
11 s - - o - ki
1] i e kj
= | myy = +kz. Pikk) | we forrm these equstions
= For g Nived p sl S possibie

VFAARE OF ], WS el F SIS
S SRS ST OIS T
T g o T Tl g0 G 7T,
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EFleyvator Exemple |

what 15 m,,, 1.8,

the expected number of
Lrips required to reach
floor #11f the elevator
15 currently on floor #27

To compute m,, from the above equation requires
that we also compute my,, M, and mMy;

8., My, k=2
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The above equation, with j fixed at the value 1
and 1=1, 2, 3, & 4, vields:

-

=10 my =1+ paMgy+ Pz Msy + Prg My
=20 My = 1+ PoaMoyt Doz May + PoyMa;

1=30 Mg = 1T+ PzaMpyt PazMay + PoyMay;

=4 Mg = T+ Pap Mgyt DyzMzy + Py My,
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-

P My =1+ P2 Mgt Pz Mg+ Prg My,

0.8 0.1 0.1 0 M= 1+ pzamagy + PzzMzyt PgyMyy
i Mgy =14 Pyp Mgyt Pyz Mgyt Pag My,
= 1405 My +0.25m5, 40 25my,  [m, = 2.25
=, Jmgy = 1+ 0 mo+ 0. 1mg+ 0.1 ﬂ"|41$ Jmy = 1.25
Mz =1+ 0. dmg+ 0 mg+ 0.1 my, m-,= 1.25

Mgy =1+ 0. 0my+ 0. 1mg+ 0 my, My = 1.25

" "
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DV solving four sels of four equalions,
we oblgin @i e mean First passage [imes.

Hean First Passage Times %

Elevator

to

=S o3 H
on

Wi 00 B

= e

LOLICIDD |

1 O am

RIRTATN

cvoneam | b

(=)

T O O LT
o in

o O O LT

= .
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The expected number of stages hetween visits
to a state #i ("mean recurrence time") is the
reciprocal of the steadv-state probability of
state #1:
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Sinulation results:

The array EUN has now been globally defined in the workspace.

Each row of the array represents a repetition of the
sinmulation.

Hote: Column 1 represents stage 0, 1.2, the Initial state,

Ka



