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One of the systems of a communication satellite consists of four

unreliable components each of which are necessary for successful

operation of the satellite—the probabilities that a component

survives the planned lifetime of the satellite (i.e., the reliabilities) 

are shown below:
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Assuming that component failures are independent,

Reliability of system

= P{components 1 through 4 survive}

= P{#1 survives} × P{#2 survives} × P{#3 survives} × P{#4 survives}

= 0.70 × 0.85 × 0.75 × 0.88 = 39.27%

This is an unacceptably low system reliability, and so redundant

units of one or more components will be used in the design.
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The reliability of a component may be

increased by including redundant units!

Reliability of component #1

= P{at least one unit survives}

= 1 – P{both units fail}

= 1 – 0.30 × 0.30 = 91%

This assumes what is referred

to as “hot standby”, i.e., a

standby unit may fail even

before it is put into service!
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By using redundant units of each component, the system

reliability can be dramatically increased—for example:

( ) ( ) ( ) [ ]2 2 2System
1 0.30 1 0.15 1 0.25 0.88

Reliability
0.91 0.9775 0.984375 0.88 77.0551%

       = − × − × − ×        
= × × × =
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The problem faced by the designer is to maximize the system

reliability, subject to a restriction on the total weight of the

system.

Component 1 2 3 4

Weight (kg) 1 2 1 3

Total weight must not exceed 12 kg. 
(Total weight of one unit of each component is 7 kg, leaving 5

kg for redundant units.)
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Reliability (%) vs. # redundant units

Component 1 unit 2 units 3 units

1 70 91 97.3

2 80 97.75 99.6625

3 75 93.75 98.4375

4 88 98.56 99.8272

We will assume that no more than three units of any component

will be included!
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Dynamic Programming Model

Stage: n component type

Decision: xn # of units of component n included in system

State: sn slack weight, i.e., # kg available
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We impose a sequential decision-making structure on the

problem by supposing that we consider the components one

at a time, deciding how many units to include based upon the

available weight capacity.

Arbitrarily we will use a “backward” order in what follows!

That is, imagine that we first consider how many units of

component #4 are to be included when we begin with 12 kg

of available capacity, while component #1 is the last to be

considered.

Component
#4

Component
#3

Component
#2

Component
#1
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Optimal Value Function
fn(sn) = maximum reliability of the subsystem consisting of

devices n, n-1, … 1,  if sn kg of available capacity

remains to be allocated.

Recursive definition of function

( ) ( ) ( ){ }1
1

maximum  1 n

n
n

n

x
n n n n n n nsx w

f s p f s w x−
≤ ≤

= − × −

( ) 0
0 0

1   if  0
0   otherwise

s
f s

≥
= 

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APL function definition
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Component #1: reliability = 70%, weight = 1 kg.

Stage 1
s \ x:  1       2       3  | Maximum
1  |  0.7000¯99.9999¯99.9999|  0.7000 
2  |  0.7000  0.9100¯99.9999|  0.9100 
3  |  0.7000  0.9100  0.9730|  0.9730 

etc.
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Component #2: reliability = 80%, weight = 2 kg.

Stage 2
s \ x:  1       2     3 | Maximum

3  |  0.5600 ¯99.9999 ¯99.9999|  0.5600 
4  |  0.7280 ¯99.9999 ¯99.9999|  0.7280 
5  |  0.7784 0.6720 ¯99.9999|  0.7784 
6  |  0.7784 0.8736 ¯99.9999|  0.8736 
7  |  0.7784 0.9341 0.6944|  0.9341 
8  |  0.7784 0.9341 0.9027|  0.9341 

etc.

For example, suppose that we have 6 kg of capacity remaining, i.e., s2 = 6, and
we choose to include 2 units of component #2.  Then we obtain 97.75%
reliability of subsystem #2 and arrive at stage 1 (component #1) with 6-2×2=2
kg of capacity remaining, so that we can achieve 91% reliability ( ( )1 2f =0.91 ) in
subsystem #1.  Hence the subsystem of components 1&2 will have reliability
0.9775×0.91 = 0.8736



Optimal Redundancy 4/1/2002 page 14 of 26

Component #3: reliability = 75%, weight = 1 kg.

Stage 3
s \ x:  1       2       3  | Maximum

4  |  0.4200¯99.9999¯99.9999|  0.4200 
5  |  0.5460  0.5250¯99.9999|  0.5460 
6  |  0.5838  0.6825  0.5513|  0.6825 
7  |  0.6552  0.7298  0.7166|  0.7298 
8  |  0.7006  0.8190  0.7662|  0.8190 
9  |  0.7006  0.8757  0.8600|  0.8757 

etc.
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Component #4: reliability = 88%, weight = 3 kg.

Stage 4
s \ x:  1       2       3  | Maximum

7  |  0.3696¯99.9999¯99.9999|  0.3696 
8  |  0.4805¯99.9999¯99.9999|  0.4805 
9  |  0.6006¯99.9999¯99.9999|  0.6006 

10  |  0.6422  0.4140¯99.9999|  0.6422 
11  |  0.7207  0.5381¯99.9999|  0.7207 
12  |  0.7706  0.6727¯99.9999|  0.7706 

Only the last row of this table need be computed to find the
optimal reliability with 12 kg of capacity!
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Summary of computations

Stage 4

Current Optimal Optimal   Next   
State Decision Value   State  

cap 7  1 units  0.3696  cap 4 
cap 8 1 units  0.4805  cap 5 
cap 9  1 units 0.6006  cap 6 
cap 10 1 units  0.6422  cap 7 
cap 11 1 units  0.7207  cap 8 
cap 12 1 units  0.7706  cap 9 

Stage 3

Current Optimal Optimal   Next   
State Decision Value   State  

cap 4  1 units  0.4200  cap 3 
cap 5  1 units  0.5460  cap 4
cap 6  2 units 0.6825 cap 4 
cap 7  2 units  0.7298  cap 5 
cap 8  2 units  0.8190  cap 6 
cap 9  2 units  0.8757  cap 7 

Stage 2

Current Optimal Optimal   Next   
State Decision Value   State  

cap 3 1 units  0.5600  cap 1 
cap 4  1 units  0.7280  cap 2 
cap 5  1 units  0.7784  cap 3 
cap 6  2 units  0.8736  cap 2 
cap 7  2 units  0.9341  cap 3 
cap 8  2 units  0.9341  cap 4 

Stage 1

Current Optimal Optimal   Next   
State Decision Value   State  

cap 1  1 units  0.7000  cap 0 
cap 2  2 units  0.9100  cap 0 
cap 3  3 units  0.9730  cap 0 
cap 4  3 units  0.9730  cap 1 
cap 5  3 units  0.9730  cap 2 
cap 6  3 units  0.9730  cap 3 
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The maximum reliability, then, given a 12 kg  weight

restriction, is ( )4 12f = 77.06 %

By a “forward pass” through the tables, we can

determine the optimal design:

stage state decision
4   cap 12    1  units  
3   cap  9    2  units  
2   cap  7    2  units  
1   cap  3    3  units  
0 cap  0       

That is, the optimal design includes 1 of component #4, 2
each of components #2 & #3, and 3 of component #1.
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• What reduction in reliability would occur if the

weight restriction were 11 kg rather than 12?

• What is the optimal design with a weight restriction

of 11 kg?
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Integer Programming Model
Define binary decision variables:

Xin = 1 if n units of component i are included

in the system

Xin = 0 otherwise

Notation:

Component
i Ri1 Ri2 Ri3

1 0.70 0.91 0.973

2 0.80 0.9775 0.996625

3 0.75 0.9375 0.984375

4 0.88 0.9856 0.998272
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Objective:

In order to linearize the objective, we will instead

maximize the logarithm of the reliability:

( )
4 3

1 1
ln in in

i n
Maximize R X

= =
∑∑

subject to ( )
4 3

max
1 1

i in
i n

W n X W
= =

≤∑∑
3

1
1     1,2,3,4in

n
X i

=

= ∀ =∑

{ }0,1       &inX i n∈ ∀
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Component
i

ln Ri1 ln Ri2 ln Ri3

1 ¯0.35667 ¯0.094311 ¯0.02737

2 ¯0.22314 ¯0.040822 ¯0.008032

3 ¯0.28768 ¯0.064539 ¯0.01575

4 ¯0.12783 ¯0.014505 ¯0.001729
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LINGO model:
SETS:

COMPONENT / A B C D/:
WEIGHT;

UNITS / 1..3/;
LOG(COMPONENT,UNITS): LNR, X; 

ENDSETS

DATA:
WEIGHT = 1 2 1 3;
WMAX = 12;
LNR = -0.35667 -0.094311 -0.027371

-0.22314 -0.040822 -0.0080322
-0.28768 -0.064539 -0.015748
-0.12783 -0.014505 -0.0017295; ! LNR is log of reliability;

ENDDATA

MAX = @SUM( COMPONENT(I): @SUM(UNITS(N):LNR(I,N)*X(I,N))) ;

@SUM( COMPONENT(I): @SUM(UNITS(N): WEIGHT(I)*N*X(I,N)))<= WMAX;

@FOR (COMPONENT(I):
@SUM (UNITS(N): X(I,N))=1;       );

@FOR (COMPONENT(I):
@FOR (UNITS(N): @BIN (X(I,N)) ) );
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LINDO model:

MAX  - .35667 X( A, 1) - .094311 X( A, 2) - .027371 X( A, 3)
- .22314 X( B, 1) - .040822 X( B, 2) - .0080322 X( B, 3)
- .28768 X( C, 1) - .064539 X( C, 2) - .015748 X( C, 3)
- .12783 X( D, 1) - .014505 X( D, 2) - .0017295 X( D, 3)

SUBJECT TO
2]  X( A, 1) + 2 X( A, 2) + 3 X( A, 3) + 2 X( B, 1) + 4 X( B, 2)

+ 6 X( B, 3) + X( C, 1) + 2 X( C, 2) + 3 X( C, 3) + 3 X( D, 1)
+ 6 X( D, 2) + 9 X( D, 3) <=   12

3]  X( A, 1) + X( A, 2) + X( A, 3) = 1
4]  X( B, 1) + X( B, 2) + X( B, 3) =    1
5]  X( C, 1) + X( C, 2) + X( C, 3) =    1
6]  X( D, 1) + X( D, 2) + X( D, 3) =    1
END
INTE    12
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Optimal  Solution:

Objective value:  - 0.2605620

Variable           Value        Reduced Cost
X( A, 3)        1.000000           0.2737100E-01
X( B, 2)        1.000000           0.4082200E-01
X( C, 2)        1.000000           0.6453900E-01
X( D, 1)        1.000000           0.1278300

Note that exp{ − 0.2605620) = 0.77062 

which is in agreement with the dynamic programming

solution.
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Optimal  Design

#1

#1

#1

#2

#2

#3

#3

#4


