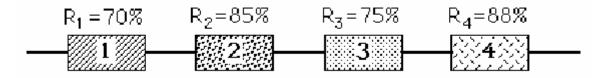
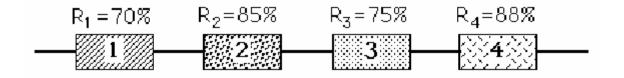


to Maximize System Reliability

- Dynamic Programming Model
- Integer Programming Model

© D. L. Bricker Dept of Mechanical & Industrial Engineering The University of Iowa One of the systems of a communication satellite consists of four unreliable components each of which are necessary for successful operation of the satellite—the probabilities that a component survives the planned lifetime of the satellite (i.e., the *reliabilities*) are shown below:



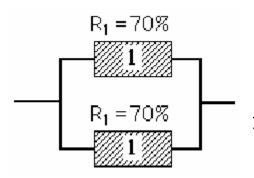


Assuming that component failures are independent,

Reliability of system

- = P{components 1 through 4 survive}
- = $P{\#1 \text{ survives}} \times P{\#2 \text{ survives}} \times P{\#3 \text{ survives}} \times P{\#4 \text{ survives}}$
- $= 0.70 \times 0.85 \times 0.75 \times 0.88 =$ **39.27%**

This is an unacceptably low system reliability, and so redundant units of one or more components will be used in the design.



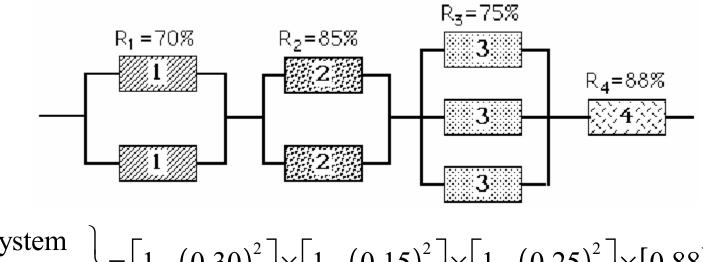
The reliability of a component may be increased by including redundant units!

Reliability of component #1

- = P{at least one unit survives}
- = 1 P{both units fail}

$$= 1 - 0.30 \times 0.30 = 91\%$$

This assumes what is referred to as "hot standby", i.e., a standby unit may fail even before it is put into service! By using redundant units of each component, the system reliability can be dramatically increased—for example:



 $\begin{cases} System \\ Reliability \end{cases} = \left[1 - (0.30)^2\right] \times \left[1 - (0.15)^2\right] \times \left[1 - (0.25)^2\right] \times [0.88] \\ = 0.91 \times 0.9775 \times 0.984375 \times 0.88 = 77.0551\%$

The problem faced by the designer is to maximize the system reliability, subject to a restriction on the total weight of the system.

Component	1	2	3	4
Weight (kg)	1	2	1	3

Total weight must not exceed 12 kg.

(Total weight of one unit of each component is 7 kg, leaving 5 kg for redundant units.)

Reliability (%) vs. # redundant units

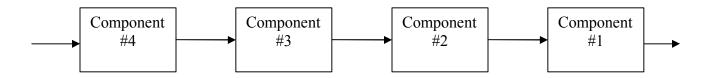
Component	1 unit	2 units	3 units
1	70	91	97.3
2	80	97.75	99.6625
3	75	93.75	98.4375
4	88	98.56	99.8272

We will assume that no more than three units of any component will be included!

Dynamic Programming Model

Stage:	<i>n</i> component type
Decision:	x_n # of units of component <i>n</i> included in system
State:	s_n slack weight, i.e., # kg available

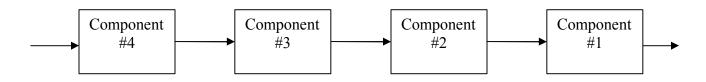
We impose a sequential decision-making structure on the problem by supposing that we consider the components one at a time, deciding how many units to include based upon the available weight capacity.



Arbitrarily we will use a "backward" order in what follows! That is, imagine that we first consider how many units of component #4 are to be included when we begin with 12 kg of available capacity, while component #1 is the last to be considered.

Optimal Value Function

 $f_n(s_n)$ = maximum reliability of the subsystem consisting of devices n, n-1, ... 1, if s_n kg of available capacity remains to be allocated.



Recursive definition of function

$$f_n(s_n) = \underset{1 \le x_n \le s_n/w_n}{\operatorname{maximum}} \left\{ \left(1 - p_n^{x_n}\right) \times f_{n-1}(s_n - w_n x_n) \right\}$$
$$f_0(s_0) = \begin{cases} 1 & \text{if } s_0 \ge 0\\ 0 & \text{otherwise} \end{cases}$$

APL function definition

```
V z←F N:t
[1]
       А
[2]
       A Optimal redundancy to maximize reliability
[3]
       A.
[4]
    :if N=0
          z \in ((\rho_S) \rho_1), -BIG
[5]
    :else
[6]
[7]
       A Recursive definition of optimal value function
[8]
          z \in Maximize (((ps)p1) \circ - (1-R[N]) \star x) \times (F N-1) [TRANSITION s \circ - W[N] \times x
[9]
     :endif
      \nabla
```

Component #1: reliability = 70%, weight = 1 kg.

Stage 1	L				
s \	x:	1	2	3	Maximum
1	0.	.7000	99.9999-	99.9999	0.7000
2	0.	.7000	0.9100-	99.9999	0.9100
3	0.	.7000	0.9100	0.9730	0.9730
etc.					

Stage 2				
S	∖ x: 1	2	3	Maximum
3	0.5600	-99.9999	-99.9999	0.5600
4	0.7280	-99.9999	-99.9999	0.7280
5	0.7784	0.6720	-99.9999	0.7784
6	0.7784	<mark>0.8736</mark>	-99.9999	0.8736
7	0.7784	0.9341	0.6944	0.9341
8	0.7784	0.9341	0.9027	0.9341
etc.				

For example, suppose that we have 6 kg of capacity remaining, i.e., $s_2 = 6$, and we choose to include 2 units of component #2. Then we obtain 97.75% reliability of subsystem #2 and arrive at stage 1 (component #1) with 6-2×2=2 kg of capacity remaining, so that we can achieve 91% reliability ($f_1(2)=0.91$) in subsystem #1. Hence the subsystem of components 1&2 will have reliability 0.9775×0.91 = 0.8736

Component #3: reliability = 75%, weight = 1 kg.

Stage 3				
s \	x: 1	2	3	Maximum
4	0.4200	-99.9999-	99.9999	0.4200
5	0.5460	0.5250	99.9999	0.5460
б	0.5838	0.6825	0.5513	0.6825
7	0.6552	0.7298	0.7166	0.7298
8	0.7006	0.8190	0.7662	0.8190
9	0.7006	0.8757	0.8600	0.8757
etc.				

Component #4: reliability = 88%, weight = 3 kg.

Stage 4				
s \	x: 1	2	3	Maximum
7	0.369	6-99.9999-9	99.9999	0.3696
8	0.480	5-99.9999-9	99.9999	0.4805
9	0.600	6-99.9999-9	99.9999	0.6006
10	0.642	2 0.4140-9	99.9999	0.6422
11	0.720	0.5381-9	99.9999	0.7207
12	0.770	0.6727-9	99.9999	0.7706

Only the last row of this table need be computed to find the optimal reliability with 12 kg of capacity!

Summary of computations

Stage 4

Curi	rent	. (Optimal	Optimal	Ne	ext
Sta	ate	De	ecision	Value	Sta	ate
cap	7	1	units	0.3696	cap	4
cap	8	1	units	0.4805	cap	5
cap	9	1	units	0.6006	cap	6
cap	10	1	units	0.6422	cap	7
cap	11	1	units	0.7207	cap	8
сар	12	1	units	0.7706	сар	9

Stage 2

Current Optimal				-		ext
Sta	ate	De	ecision	Value	Sta	ate
сар	3	1	units	0.5600	сар	1
сар	4	1	units	0.7280	cap	2
сар	5	1	units	0.7784	cap	3
сар	6	2	units	0.8736	cap	2
сар	7	2	units	0.9341	cap	3
cap	8	2	units	0.9341	cap	4

Stage 3

Current Optimal				Optimal	Ne	ext
Sta	ate	De	ecision	Value	Sta	ate
cap	4	1	units	0.4200	сар	3
cap	5	1	units	0.5460	сар	4
cap	6	2	units	0.6825	cap	4
cap	7	2	units	0.7298	cap	5
cap	8	2	units	0.8190	cap	6
cap	9	2	units	0.8757	cap	7

Stage 1

Current Optimal				Optimal	Ne	ext
State Decision			Value	Sta	ate	
сар	1	1	units	0.7000	сар	0
сар	2	2	units	0.9100	cap	0
сар	3	3	units	0.9730	cap	0
cap	4	3	units	0.9730	сар	1
cap	5	3	units	0.9730	сар	2
cap	6	3	units	0.9730	cap	3

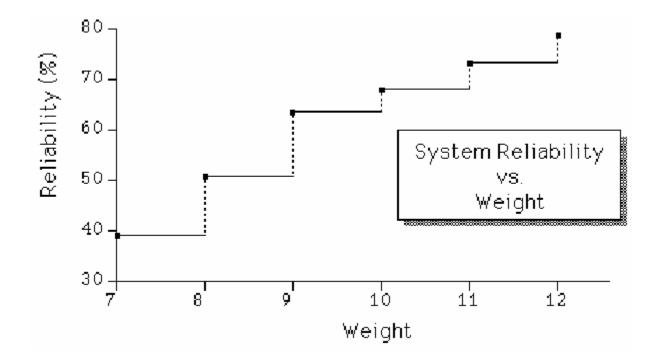
The maximum reliability, then, given a 12 kg weight restriction, is $f_4(12) = 77.06\%$

By a "forward pass" through the tables, we can determine the optimal design:

stage	state	decision
4	cap 12	1 units
3	cap 9	2 units
2	cap 7	2 units
1	cap 3	3 units
0	cap O	

That is, the optimal design includes 1 of component #4, 2 each of components #2 & #3, and 3 of component #1.

- What reduction in reliability would occur if the weight restriction were 11 kg rather than 12?
- What is the optimal design with a weight restriction of 11 kg?



Integer Programming Model

Define *binary* decision variables:

$$X_{in}$$
 = 1 if *n* units of component *i* are included
in the system

 $X_{in} = 0$ otherwise

Notation:

Component			
i	R_{i1}	R _{i2}	R _{i3}
1	0.70	0.91	0.973
2	0.80	0.9775	0.996625
3	0.75	0.9375	0.984375
4	0.88	0.9856	0.998272

Objective:

In order to linearize the objective, we will instead maximize the *logarithm of the reliability*:

Maximize
$$\sum_{i=1}^{4} \sum_{n=1}^{3} (\ln R_{in}) X_{in}$$

subject to

$$\sum_{i=1}^{4} \sum_{n=1}^{3} (W_i n) X_{in} \leq W_{\max}$$
$$\sum_{n=1}^{3} X_{in} = 1 \quad \forall i = 1, 2, 3, 4$$
$$X_{in} \in \{0, 1\} \quad \forall i \& n$$

Component	<i>ln</i> R _{i1}	$ln R_{i2}$	<i>ln</i> R _{i3}
i			
1	0.35667	0.094311	-0.02737
2	-0.22314	-0.040822	-0.008032
3	-0.28768	-0.064539	-0.01575
4	-0.12783	-0.014505	-0.001729

LINGO model:

```
SETS:
 COMPONENT / A B C D/:
   WEIGHT;
 UNITS / 1..3/;
 LOG(COMPONENT, UNITS): LNR, X;
ENDSETS
DATA:
 WEIGHT = 1 \ 2 \ 1 \ 3;
 WMAX = 12i
 LNR = -0.35667 - 0.094311 - 0.027371
       -0.22314 -0.040822 -0.0080322
       -0.28768 -0.064539 -0.015748
       -0.12783 -0.014505 -0.0017295; ! LNR is log of reliability;
ENDDATA
MAX = @SUM(COMPONENT(I): @SUM(UNITS(N):LNR(I,N)*X(I,N)));
@SUM( COMPONENT(I): @SUM(UNITS(N): WEIGHT(I)*N*X(I,N)))<= WMAX;</pre>
@FOR (COMPONENT(I):
  @SUM (UNITS(N): X(I,N))=1; );
@FOR (COMPONENT(I):
  @FOR (UNITS(N): @BIN (X(I,N)) );
```

LINDO model:

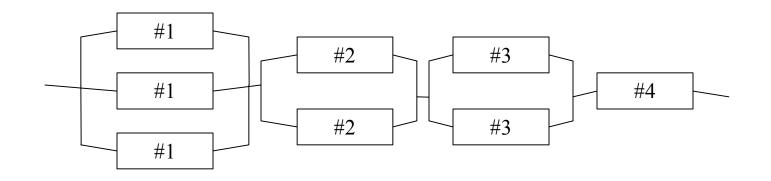
MAX - .35667 X(A, 1) - .094311 X(A, 2) - .027371 X(A, 3) - .22314 X(B, 1) - .040822 X(B, 2) - .0080322 X(B, 3) - .28768 X(C, 1) - .064539 X(C, 2) - .015748 X(C, 3) - .12783 X(D, 1) - .014505 X(D, 2) - .0017295 X(D, 3) SUBJECT TO 2] X(A, 1) + 2 X(A, 2) + 3 X(A, 3) + 2 X(B, 1) + 4 X(B, 2)+ 6 X(B, 3) + X(C, 1) + 2 X(C, 2) + 3 X(C, 3) + 3 X(D, 1)+ 6 X(D, 2) + 9 X(D, 3) <= 12X(A, 1) + X(A, 2) + X(A, 3) =31 1 41 X(B, 1) + X(B, 2) + X(B, 3) =1 5] X(C, 1) + X(C, 2) + X(C, 3) =1 6] X(D, 1) + X(D, 2) + X(D, 3) =1 END INTE 12

Optimal Solution:

Objective value: - 0.2605620

Variable	Value	Reduced Cost
X(A,3)	1.000000	0.2737100E-01
X(B,2)	1.000000	0.4082200E-01
X(C,2)	1.000000	0.6453900E-01
X(D, 1)	1.000000	0.1278300

Note that $\exp\{-0.2605620\} = 0.77062$ which is in agreement with the dynamic programming solution.



Optimal Design