OPTIMAL LOT SIZE

by Dynamic Programming

Dennis Bricker,
Dept. of Industrial Engineering,
University of Iowa
dennis-bricker@uiowa.edu
A company requires \(n \) units of a customized electronic component, which is ordered from a supplier.

When a lot is received, it is immediately inspected, and the company pays an amount \(c \) for each unit passing inspection.

The rejection rate is \(q = 1 - p \).

Any units in surplus of the number required yields a salvage value \(v \) per unit.

If insufficient acceptable units are received, another lot must be ordered. There is a fixed cost \(K \) for reordering.
The smallest lotsize for which the expected yield of acceptable units is equal to at least n is, of course, $\left\lceil \frac{n}{p} \right\rceil$, but the optimal lot size will, in general, be larger in order to avoid the reordering cost K.

Example data

- $n = 20$ units
- $q =$ rejection rate = 15%
- $c =$ cost per acceptable unit = 20
- $v =$ salvage value for surplus units = 5
- $K =$ reordering cost = 500
We will assume that the outcome of each inspection is independent and identically distributed, so that the acceptable yield of a lot of size N would have binomial distribution with parameters (N, p). Hence we would expect that a lot size of $\left\lceil \frac{20}{0.85} \right\rceil = \left\lceil 23.5294 \right\rceil = 24$ would yield the required 20 units. However, there would be approximately

$$\sum_{j=0}^{19} p_x(j) = 28.66\%$$

probability that a deficit would remain so that reordering would be required, where

$$p_x(j) = \binom{x}{j} p^j (1 - p)^{x-j}$$

is the probability that j units of a lot of size x will pass inspection.
Binomial Distribution Table

\[P \{j \text{ units accepted} \mid x \text{ units ordered}\} \]

<table>
<thead>
<tr>
<th>(x)</th>
<th>(j)</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>15000</td>
<td>85000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>02250</td>
<td>25500</td>
<td>72250</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>00338</td>
<td>05738</td>
<td>32513</td>
<td>61412</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>00051</td>
<td>01148</td>
<td>09754</td>
<td>36848</td>
<td>52201</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>00008</td>
<td>00215</td>
<td>02438</td>
<td>13818</td>
<td>39150</td>
<td>44371</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>00001</td>
<td>00039</td>
<td>00549</td>
<td>04145</td>
<td>17618</td>
<td>39933</td>
<td>37715</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>00000</td>
<td>00007</td>
<td>00115</td>
<td>01088</td>
<td>06166</td>
<td>20965</td>
<td>39601</td>
<td>32058</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>00000</td>
<td>00001</td>
<td>00023</td>
<td>00261</td>
<td>01850</td>
<td>08386</td>
<td>23760</td>
<td>38469</td>
<td>27249</td>
<td></td>
</tr>
</tbody>
</table>

For example, if 6 units are ordered, the probability that exactly 4 units are accepted is 0.17618.
For the original \(n \) required units and each possible deficit, what are the lot sizes which will minimize the total expected cost (minus salvage value received for surplus units)?

Dynamic Programming Model

Define an optimal value function

\[
f(n) = \text{minimum expected cost of acquiring } n \text{ acceptable units.}
\]

\[
x^*(n) = \text{optimal lot size when } n \text{ acceptable units are required.}
\]

We wish to determine the values of \(f(20) \) and \(x^(20) \).*
Recursive Definition of the Optimal Value Function

\[
f(n) = \min_{x \geq n} \left\{ c \sum_{j=0}^{x} j p_{x}(j) - v \sum_{j=n+1}^{x} (j-n) p_{x}(j) + \sum_{j=0}^{n-1} \left[K + f(n-j) \right] p_{x}(j) \right\}
\]

where

- \(c \sum_{j=0}^{x} j p_{x}(j) \) is the expected cost of acceptable units in a lot of size \(x \)
- \(v \sum_{j=n+1}^{x} (j-n) p_{x}(j) \) is the expected salvage value of surplus units
- \(\sum_{j=0}^{n-1} \left[K + f(n-j) \right] p_{x}(j) \) is the expected cost of reordering

Note that \(f(n) \) appears on both left and right of the "="!
Denote the optimal \(x \) by \(\hat{x} \).

\[
f(n) - p_{\hat{x}}(0)f(n) = c \sum_{j=0}^{\hat{x}} jp_{\hat{x}}(j) - v \sum_{j=n+1}^{\hat{x}} (j-n)p_{\hat{x}}(j) + \sum_{j=0}^{n-1} \left[K + f(n-j) \right] p_{\hat{x}}(j) + Kp_{\hat{x}}(0)
\]

Solving for \(f(n) \) yields the recursion

\[
f(n) = \min_{x \geq n} \left\{ c \sum_{j=0}^{x} j p_x(j) - v \sum_{j=n+1}^{x} (j-n) p_x(j) + \sum_{j=0}^{n-1} \left[K + f(n-j) \right] p_x(j) + Kp_x(0) \right\} / \left(1 - p_x(0) \right)
\]
Computation of $f(1)$:

<table>
<thead>
<tr>
<th>x</th>
<th>purchase</th>
<th>salvage</th>
<th>reorder</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>17</td>
<td>0.00000</td>
<td>75.00000</td>
<td>108.2353</td>
</tr>
<tr>
<td>2</td>
<td>34</td>
<td>-3.61250</td>
<td>11.25000</td>
<td>42.5959</td>
</tr>
<tr>
<td>3</td>
<td>51</td>
<td>-7.76688</td>
<td>1.68750</td>
<td>45.0727</td>
</tr>
<tr>
<td>4</td>
<td>68</td>
<td>-12.00253</td>
<td>0.25312</td>
<td>56.2791</td>
</tr>
<tr>
<td>5</td>
<td>85</td>
<td>-16.25038</td>
<td>0.03796</td>
<td>68.7928</td>
</tr>
<tr>
<td>6</td>
<td>102</td>
<td>-20.50006</td>
<td>0.00569</td>
<td>81.5066</td>
</tr>
<tr>
<td>7</td>
<td>119</td>
<td>-24.75001</td>
<td>0.00085</td>
<td>94.2510</td>
</tr>
<tr>
<td>8</td>
<td>136</td>
<td>-29.00000</td>
<td>0.00012</td>
<td>107.0002</td>
</tr>
</tbody>
</table>

$f(1) = 42.5959$ with lotsize = 2
Example Calculation: Suppose the lotsize is $x=3$, so that the probability distribution of the number of acceptable pieces is

<table>
<thead>
<tr>
<th>j</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>0038</td>
<td>05738</td>
<td>32513</td>
<td>61412</td>
</tr>
</tbody>
</table>

$$p_x(j) = \binom{x}{j} p^j (1-p)^{x-j}$$
Then the expected purchase price is \(c \sum_{j=1}^{x} j p_x(j) = \)

\[
20\left[1(0.05738) + 2(0.32513) + 3(0.61412) \right] \\
= 20[0.057375 + 0.65025 + 1.84237] = 20[2.55] = \$51
\]

The expected **salvage value** is \(v \sum_{j=n+1}^{x} (j-n) p_x(j) = \)

\[
5 \left[1 \times 0.32513 + 2 \times 0.61412 \right] = 5[0.325125 + 1.22825] \\
= 5[1.55338] = \$7.77
\]

The expected **reorder cost** is \(\sum_{j=0}^{n-1} \left[K + f(n-j) \right] p_x(j) + K p_x(0) = \)

\[
500 \times 0.00338 = \$1.6875
\]

Summing and dividing by \(1 - p_x(0) = 0.996625 \) yields

\[
\frac{51 - 7.77 + 1.6875}{0.996625} = \$45.07
\]
Computation of f(2):

<table>
<thead>
<tr>
<th>x</th>
<th>purchase</th>
<th>salvage</th>
<th>reorder</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>34</td>
<td>0.00000</td>
<td>1.39708E2</td>
<td>177.7068</td>
</tr>
<tr>
<td>3</td>
<td>51</td>
<td>-3.07063</td>
<td>3.05188E1</td>
<td>78.7138</td>
</tr>
<tr>
<td>4</td>
<td>68</td>
<td>-7.06244</td>
<td>6.01219E0</td>
<td>66.9837</td>
</tr>
<tr>
<td>5</td>
<td>85</td>
<td>-11.26152</td>
<td>1.11698E0</td>
<td>74.8612</td>
</tr>
<tr>
<td>6</td>
<td>102</td>
<td>-15.50205</td>
<td>1.99821E-1</td>
<td>86.6988</td>
</tr>
<tr>
<td>7</td>
<td>119</td>
<td>-19.75036</td>
<td>3.48142E-2</td>
<td>99.2846</td>
</tr>
<tr>
<td>8</td>
<td>136</td>
<td>-24.00006</td>
<td>5.94828E-3</td>
<td>112.0059</td>
</tr>
</tbody>
</table>

\[f(2) = 66.9837 \text{ with lotsize } = 4 \]
Computation of $f(3)$:

<table>
<thead>
<tr>
<th>x</th>
<th>purchase</th>
<th>salvage</th>
<th>reorder</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>68</td>
<td>-2.61003</td>
<td>5.52821E1</td>
<td>120.7332</td>
</tr>
<tr>
<td>5</td>
<td>85</td>
<td>-6.39458</td>
<td>1.34027E1</td>
<td>92.0151</td>
</tr>
<tr>
<td>6</td>
<td>102</td>
<td>-10.53148</td>
<td>2.95984E0</td>
<td>94.4294</td>
</tr>
<tr>
<td>7</td>
<td>119</td>
<td>-14.75646</td>
<td>6.13824E-1</td>
<td>104.8575</td>
</tr>
<tr>
<td>8</td>
<td>136</td>
<td>-19.00127</td>
<td>1.21666E-1</td>
<td>117.1204</td>
</tr>
<tr>
<td>9</td>
<td>153</td>
<td>-23.25024</td>
<td>2.33059E-2</td>
<td>129.7731</td>
</tr>
<tr>
<td>10</td>
<td>170</td>
<td>-27.50005</td>
<td>4.34687E-3</td>
<td>142.5043</td>
</tr>
<tr>
<td>11</td>
<td>187</td>
<td>-31.75001</td>
<td>7.93567E-4</td>
<td>155.2508</td>
</tr>
<tr>
<td>12</td>
<td>204</td>
<td>-36.00000</td>
<td>1.42349E-4</td>
<td>168.0001</td>
</tr>
</tbody>
</table>

$f(3) = 92.0151$ with lotsize = 5
Note that the minimand is unimodal, although not convex:
Computation of $f(4)$:

<table>
<thead>
<tr>
<th>x</th>
<th>purchase</th>
<th>salvage</th>
<th>reorder</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>85</td>
<td>-2.21853</td>
<td>$8.35848E1$</td>
<td>166.379</td>
</tr>
<tr>
<td>6</td>
<td>102</td>
<td>-5.76817</td>
<td>$2.39300E1$</td>
<td>120.163</td>
</tr>
<tr>
<td>7</td>
<td>119</td>
<td>-9.81698</td>
<td>$6.10536E0$</td>
<td>115.289</td>
</tr>
<tr>
<td>8</td>
<td>136</td>
<td>-14.01554</td>
<td>$1.43755E0$</td>
<td>123.422</td>
</tr>
<tr>
<td>9</td>
<td>153</td>
<td>-18.25341</td>
<td>$3.19049E-1$</td>
<td>135.066</td>
</tr>
<tr>
<td>10</td>
<td>170</td>
<td>-22.50072</td>
<td>$6.76673E-2$</td>
<td>147.567</td>
</tr>
<tr>
<td>11</td>
<td>187</td>
<td>-26.75015</td>
<td>$1.38449E-2$</td>
<td>160.264</td>
</tr>
<tr>
<td>12</td>
<td>204</td>
<td>-31.00003</td>
<td>$2.75127E-3$</td>
<td>173.003</td>
</tr>
<tr>
<td>13</td>
<td>221</td>
<td>-35.25001</td>
<td>$5.33687E-4$</td>
<td>185.751</td>
</tr>
<tr>
<td>14</td>
<td>238</td>
<td>-39.50000</td>
<td>$1.01441E-4$</td>
<td>198.500</td>
</tr>
<tr>
<td>15</td>
<td>255</td>
<td>-43.75000</td>
<td>$1.89498E-5$</td>
<td>211.250</td>
</tr>
<tr>
<td>16</td>
<td>272</td>
<td>-48.00000</td>
<td>$3.48733E-6$</td>
<td>224.000</td>
</tr>
</tbody>
</table>

$f(4) = 115.289$ with lotsize $= 7$

etc.
<table>
<thead>
<tr>
<th># Required</th>
<th>Lotsize</th>
<th>Expected yield</th>
<th>Expected cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0.00</td>
<td>0.0000</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>1.70</td>
<td>42.5959</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>3.40</td>
<td>66.9837</td>
</tr>
<tr>
<td>3</td>
<td>5</td>
<td>4.25</td>
<td>92.0151</td>
</tr>
<tr>
<td>4</td>
<td>7</td>
<td>5.95</td>
<td>115.2886</td>
</tr>
<tr>
<td>5</td>
<td>8</td>
<td>6.80</td>
<td>137.6817</td>
</tr>
<tr>
<td>6</td>
<td>9</td>
<td>7.65</td>
<td>161.7710</td>
</tr>
<tr>
<td>7</td>
<td>11</td>
<td>9.35</td>
<td>183.2215</td>
</tr>
<tr>
<td>8</td>
<td>12</td>
<td>10.20</td>
<td>205.0304</td>
</tr>
<tr>
<td>9</td>
<td>13</td>
<td>11.05</td>
<td>227.9728</td>
</tr>
<tr>
<td>10</td>
<td>15</td>
<td>12.75</td>
<td>249.7202</td>
</tr>
<tr>
<td>11</td>
<td>16</td>
<td>13.60</td>
<td>270.8886</td>
</tr>
<tr>
<td>12</td>
<td>17</td>
<td>14.45</td>
<td>292.8776</td>
</tr>
<tr>
<td>13</td>
<td>19</td>
<td>16.15</td>
<td>315.5066</td>
</tr>
<tr>
<td>14</td>
<td>20</td>
<td>17.00</td>
<td>336.1120</td>
</tr>
<tr>
<td>15</td>
<td>21</td>
<td>17.85</td>
<td>357.3386</td>
</tr>
<tr>
<td>16</td>
<td>22</td>
<td>18.70</td>
<td>379.2370</td>
</tr>
<tr>
<td>17</td>
<td>24</td>
<td>20.40</td>
<td>401.0926</td>
</tr>
<tr>
<td>18</td>
<td>25</td>
<td>21.25</td>
<td>421.7098</td>
</tr>
<tr>
<td>19</td>
<td>26</td>
<td>22.10</td>
<td>442.8532</td>
</tr>
<tr>
<td>20</td>
<td>27</td>
<td>22.95</td>
<td>464.5606</td>
</tr>
</tbody>
</table>
Summary

If 20 usable parts are required, a lot of size 27 should be ordered. The expected yield is 22.95 (nearly 23, i.e., 3 more than required), and the expected cost is $464.56.

If, for example, the yield is 23, the cost would be $20 \times 23 = $460, and the extra 3 parts could be salvaged for $5 \times 3 = $15, a net cost of $445 (about $19.56 less than the expected cost).

If the yield were only 18, however, the cost of this lot would be $20 \times 18 = $360, and two additional parts are needed, so that another lot of size 4 should be ordered. (This would cost an additional $500 for re-ordering, plus the cost of the acceptable parts, etc.)