LP Sensitivity Analysis

Zales Jewelers uses rubies and sapphires to produce two types of rings. A type 1 ring requires 2 rubies, 3 sapphires, and 1 hour of jeweler's labor. A type 2 ring requires 3 rubies, 2 sapphires, and 2 hours of jeweler's labor. Each type 1 ring sells for $\$ 400$, and each type 2 ring sells for $\$ 500$. All rings produced by Zales can be sold. At present, Zales has 100 rubies, 120 sapphires, and 70 hours of jeweler's labor available. Extra rubies can be purchased at a cost of $\$ 100$ each. Market demand requires that the company produce at least 20 type 1 rings and at least 25 type 2 rings. To maximize profit, Zales should solve the following LP:

$$
\begin{aligned}
& \mathrm{X} 1=\text { type } 1 \text { rings produced. } \\
& \mathrm{X} 2=\text { type } 2 \text { rings produced } \\
& \mathrm{R}=\text { number of rubies purchased. } \\
& \text { MAX } \mathrm{z}=400 \mathrm{X}_{1}+500 \mathrm{X}_{2}-100 \mathrm{R} \\
& \text { s.t. } 2 \mathrm{X}_{1}+3 \mathrm{X}_{2}-\mathrm{R} \leq 100 \\
& 3 \mathrm{X}_{1}+2 \mathrm{X}_{2} \\
& \mathrm{X}_{1}+2 \mathrm{X}_{2} \\
& \mathrm{X}_{1} \quad \leq 70 \\
& \mathrm{X}_{2} \\
& \mathrm{X}_{1} \geq 0, \mathrm{X}_{2} \geq 0
\end{aligned}
$$

The LINDO output for this problem follows:

```
MAX 400 X1 + 500 X2 - 100 R
SUBJECT TO
2) 2 X1 + 3 X2 - R <= 100
3) }3\textrm{X1}+2\textrm{X}2<= 12
4) }\textrm{X1}+2\textrm{X}2<= 7
5) X1 >= 20
6) }\textrm{X}2>=2
END
OBJECTIVE FUNCTION VALUE
1) 19000.00
\begin{tabular}{rcr} 
VARIABLE & VALUE & REDUCED COST \\
X1 & 20.000000 & .000000 \\
X2 & 25.000000 & .000000 \\
R & 15.000000 & .000000 \\
ROW & SLACK OR SURPLUS & DUAL PRICES \\
\(2)\) & .000000 & 100.000000 \\
\(3)\) & 10.000000 & .000000 \\
\(4)\) & .000000 & 200.000000 \\
\(5)\) & .000000 & .000000 \\
\(6)\) & -.000000 & -200.000000
\end{tabular}
```

Reminder: According to LINDO's definitions,

- "REDUCED COST" is the rate by which the optimal value of the objective function deteriorates as a nonbasic variable is increased.
(Therefore, units of REDUCED COST are [units of objective]/[units of variable], e.g., \$/ring)
- "DUAL PRICE" is the rate by which the optimal value of the objective function improves as a right-hand-side is increased. (Therefore, units of DUAL PRICE are [units of objective]/
/[units of RHS] , e.g., \$/stone)

Use the LINDO output to answer the following questions (wherever possible):
a. Suppose that, instead of $\$ 100$, each ruby costs $\$ 190$. Should Zales still purchase rubies?
b. Suppose that Zales were required to produce at least 23 (not 25) Type 2 rings. What would Zales' profit now be? \qquad
c. What is the most that Zales should be willing to pay for another hour of jeweler's time? \qquad
How much should they be willing to pay for another four hours? \qquad
d. Suppose that another 3 hours of jeweler's time became available. By using the "substitution rates" in the tableau, explain what changes would result in the number of rings of each type which would be produced, as well as the number of additional rubies (if any) which would be purchased.
e. What is the most that Zales should be willing to pay for another sapphire? \qquad
f. Zales is considering producing Type 3 rings. Each type 3 ring can be sold for $\$ 550$ and requires 4 rubies, 2 sapphires, and 1 hour of jeweler's labor. Without re-running the LP, can you determine whether Zales should produce any type 3 rings? \qquad (You need not determine how many, if any, should be produced.)

