Sensitivity Analysis via LINDO

Consider again the LP model of PAR, Inc., which manufactures standard and deluxe golf bags:
$\mathrm{X} 1=$ number of STANDARD golf bags manufactured per quarter
X 2 = number of DELUXE golf bags manufactured per quarter
Four operations are required, with the time per golf bag as follows:

	Standard	Deluxe	Available
Cut-\&-Dye	0.7 hr	1.0 hr	630 hrs
Sew	0.5 hr	0.8666 hr	600 hrs
Finish	1.0 hr	0.6666 hr	708 hrs
Inspect-\&-Pack	0.1 hr	0.25 hr	135 hrs
Profit (\$/bag)	10.00	9.00	

LINDO provides the following output:
MAX $\quad 10 \mathrm{X} 1+9 \mathrm{X} 2$
SUBJECT TO
2) $0.7 \mathrm{X} 1+\mathrm{X} 2<=630$
3) $0.5 \mathrm{X1}+0.86666 \mathrm{X} 2<=600$
4) $\mathrm{X} 1+0.66666 \mathrm{X} 2<=708$
5) $0.1 \mathrm{X} 1+0.25 \mathrm{X} 2<=135$

END
OBJECTIVE FUNCTION VALUE

1) 7668.01200

VARIABLE VALUE REDUCED COST
X1 540.003110 .000000
X2 251.997800 . 000000
ROW SLACK OR SURPLUS DUAL PRICES
2) .0000004 .375086
3) 111.602000 .000000
4) .000000 6.937440
5) 18.000232 .000000

RANGES IN WHICH THE BASIS IS UNCHANGED:

OBJ COEFFICIENT RANGES

VARIABLE	CURRENT	ALLOWABLE	ALLOWABLE
	COEF	INCREASE	DECREASE
X1	10.000000	3.500135	3.700000
X2	9.000000	5.285715	2.333400
	RIGHTHAND SIDE RANGES		
ROW	CURRENT	ALLOWABLE	ALLOWABLE
	RHS	INCREASE	DECREASE
2	630.000000	52.364582	134.400000
3	600.000000	INFINITY	111.602000
4	708.000000	192.000010	128.002800
5	135.000000	INFINITY	18.000232

ROW	(BA		X1	$\underline{\mathrm{x} 2}$	SLK 2	$\underline{\text { SLK } 3}$	SLK 4	SLK 5	
1	ART		. 00	. 00	4.375	. 00	6.937	. 00	7668.012
2	X2		. 00	1.00	1.875	. 00	-1.312	. 00	251.998
3	SLK	3	. 00	. 00	-1.000	1.00	. 200	. 00	111.602
4	X1		1.00	. 00	-1.250	. 00	1.875	. 00	540.003
5	SLK	5	. 00	. 00	-. 344	. 00	. 141	1.00	18.000

Enter the correct answer into each blank or check the correct alternative answer, as appropriate. If not sufficient information, write "NSI" in the blank:
a. If the profit on DELUXE bags were to decrease from $\$ 9$ each to $\$ 7$ each, the number of DELUXE bags to be produced would
\square | decrease \qquad remain the same \qquad | not sufficient info.
b. The LP problem above has |__| exactly one optimal solution |__| exactly two optimal solutions
\qquad an infinite number of optimal solutions
c. If an additional 10 hours were available in the sewing department, PAR would be able to obtain an additional \$ \qquad in profits.
d. If an additional 10 hours were available in the finishing department, PAR would be able to obtain an additional \$ \qquad in profits.
e. If PAR is forced to increase the variable "SLK 4" by 1 hour (equivalently, to reduce the time available in the finishing department by 1 hour), this will have the effect(s) of
\square | increasing ___ decreasing the hours used in the cut-\&-dye department __| increasing |__| decreasing the hours used in the sewing department
f. If the variable "SLK 4" were increased by 10 , X1 would \qquad | increase \qquad decrease by
\qquad STANDARD golf bags/quarter.
g. If the variable "SLK 4" were increased by $10, \mathrm{X} 2$ would \qquad increase \qquad decrease by
\qquad DELUXE golf bags/quarter.
h. If a pivot were to be performed to enter the variable SLK4 into the basis, then according to the "minimum ratio test", the value of SLK4 in the resulting basic solution would be approximately

___ insufficient information available
i. If the variable SLK 4 were to enter the basis, then the variable \qquad will leave the basis.

米米米米米米米Solutions 米米当米米米米
a．If the profit on DELUXE bags were to decrease from $\$ 9$ each to $\$ 7$ each，the number of DELUXE bags to be produced would
\qquad ｜increase｜ \qquad \mid decrease $|\underline{\mathbf{X}}|$ remain the same $|\ldots|$ not sufficient info．
b．The LP problem above has
$|\underline{\mathbf{X}}|$ exactly one optimal solution ｜exactly two optimal solutions al solutions
c．If an additional 10 hours were available in the sewing department，PAR would be able to obtain an additional \＄zero \qquad in profits．
d．If an additional 10 hours were available in the finishing department，PAR would be able to obtain an additional \＄ 69.37 in profits．
e．If PAR is forced to increase the variable＂SLK 4＂by 1 hour（equivalently，to reduce the time available in the finishing department by 1 hour），this will have the effect（s）of
$\left|_\right|$increasing $\quad\left|_\right|$decreasing \quad the hours used in the cut－\＆－dye department
$\left|_\right|$increasing $\quad\left|_\underline{X}\right|$ decreasing \quad the hours used in the sewing department
f．If the variable＂SLK 4＂were increased by $10, \mathrm{X} 1$ would $|\ldots|$ increase $|\underline{\mathbf{X}}|$ decrease by $\underline{\mathbf{1 8 . 7 5}}$ STANDARD golf bags／quarter．
g．If the variable＂SLK 4＂were increased by 10 ，X2 would $|\underline{\mathbf{X}}|$ increase $|\ldots|$ decrease by $\ldots \underline{\mathbf{1 3 . 1 2}}$ DELUXE golf bags／quarter．
h．If a pivot were to be performed to enter the variable SLK4 into the basis，then according to the ＂minimum ratio test＂，the value of SLK4 in the resulting basic solution would be approximately
$\ldots \quad \begin{gathered}252 / 1.312 \\ 1.312 / 252\end{gathered}$

＿insufficient information available
i．If the variable SLK 4 were to enter the basis，then the variable SLK5 will leave the basis．

