Sensitivity Analysis via LINDO

Consider again the LP model of **PAR**, **Inc**., which manufactures standard and deluxe golf bags: X1 = number of STANDARD golf bags manufactured per quarter

X2 = number of DELUXE golf bags manufactured per quarter

Four operations are required, with the time per golf bag as follows:

	Standard	Deluxe	Available
Cut-&-Dye	0.7 hr	1.0 hr	630 hrs
Sew	0.5 hr	0.8666 hr	600 hrs
Finish	1.0 hr	0.6666 hr	708 hrs
Inspect-&-Pack	0.1 hr	0.25 hr	135 hrs
Profit (\$/bag)	10.00	9.00	

LINDO provides the following output:

211,20	•	, the rene while output	
MAX	10 X	1 + 9 X2	
SUBJE	СТ ТО		
	2)	0.7 X1 + X2 <= 63	0
	3)	0.5 X1 + 0.86666 X2	<= 600
	4)	X1 + 0.66666 X2 <=	708
	5)	0.1 X1 + 0.25 X2 <=	135
END			
	OBJE	CTIVE FUNCTION VALUE	
	1)	7668.01200	
VART	ARLE	VALTE	REDUCED COST
VARI	ABLE x1	VALUE 540 003110	REDUCED COST
VARI.	Xl	540.003110	.000000
VARI.			
VARI.	Xl	540.003110 251.997800	.000000
VARI	X1 X2	540.003110 251.997800	.000000
VAR I.	X1 X2 ROW	540.003110 251.997800 SLACK OR SURPLUS	.000000 .000000 DUAL PRICES
VARI.	X1 X2 ROW 2)	540.003110 251.997800 SLACK OR SURPLUS .000000	.000000 .000000 DUAL PRICES 4.375086
VARI.	X1 X2 ROW 2) 3)	540.003110 251.997800 SLACK OR SURPLUS .000000 111.602000	.000000 .000000 DUAL PRICES 4.375086 .000000

RANGES IN WHICH THE BASIS IS UNCHANGED:

OBJ COEFFICIENT RANGES

VARIABLE	CURRENT	ALLOWABLE	ALLOWABLE
	COEF	INCREASE	DECREASE
Xl	10.000000	3.500135	3.700000
X2	9.00000	5.285715	2.333400

RIGHTHAND SIDE RANGES

ROW	CURRENT	ALLOWABLE	ALLOWABLE
	RHS	INCREASE	DECREASE
2	630.000000	52.364582	134.400000
3	600.000000	INFINITY	111.602000
4	708.000000	192.000010	128.002800
5	135.000000	INFINITY	18.000232

THE TABLEAU

ROI	V (BA	SIS	S) <u>X1</u>	X2	SLK 2	SLK 3	SLK 4	SLK 5	
1	ART		.00	.00	4.375	.00	6.937	.00	7668.012
2	X2		.00	1.00	1.875	.00	-1.312	.00	251.998
3	SLK	3	.00	.00	-1.000	1.00	.200	.00	111.602
4	X1		1.00	.00	-1.250	.00	1.875	.00	540.003
5	SLK	5	.00	.00	344	.00	.141	1.00	18.000

Enter the correct answer into each blank or check the correct alternative answer, as appropriate. If not sufficient information, write "NSI" in the blank:

a. If the profit on DELUXE bags were to decrease from \$9 each to \$7 each, the number of DELUXE bags to be produced would

|_| increase |_| decrease |_| remain the same |_| not sufficient info.

- b. The LP problem above has
 |__| exactly one optimal solution
 |_ an infinite number of optimal solutions
- c. If an additional 10 hours were available in the sewing department, PAR would be able to obtain an additional \$______ in profits.
- d. If an additional 10 hours were available in the finishing department, PAR would be able to obtain an additional \$ in profits.
- e. If PAR is forced to increase the variable "SLK 4" by 1 hour (equivalently, to reduce the time available in the finishing department by 1 hour), this will have the effect(s) of

 | increasing
 | decreasing
 the hours used in the cut-&-dye department

- f. If the variable "SLK 4" were increased by 10, X1 would |__| increase |__| decrease by _____ STANDARD golf bags/quarter.
- g. If the variable "SLK 4" were increased by 10, X2 would |__| increase |__| decrease by _____ DELUXE golf bags/quarter.
- h. If a pivot were to be performed to enter the variable SLK4 into the basis, then according to the "minimum ratio test", the value of SLK4 in the resulting basic solution would be approximately

$252/_{1.312}$	$ _{-} ^{0.2}/_{111.6}$	540/ _{1.875}	$ _{-} ^{0.141}/_{18}$
1.312/252	$ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $	1.875/540	$ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $
	insufficient inf	ormation available	

i. If the variable SLK 4 were to enter the basis, then the variable will leave the basis.

[|] increasing | _ | decreasing the hours used in the cut-&-dye department increasing | _ | decreasing the hours used in the sewing department

*******	Solutions	******
---------	-----------	--------

 a. If the profit on DELUXE bags were to decrease from \$9 each to \$7 each, the number of DELUXE bags to be produced would increase decrease X remain the same not sufficient info.
 b. The LP problem above has <u>X</u> exactly one optimal solution exactly two optimal solutions
 c. If an additional 10 hours were available in the sewing department, PAR would be able to obtain an additional \$<u>zero</u> in profits.
 d. If an additional 10 hours were available in the finishing department, PAR would be able to obtain an additional <u>69.37</u> in profits.
 e. If PAR is forced to increase the variable "SLK 4" by 1 hour (equivalently, to reduce the time available in the finishing department by 1 hour), this will have the effect(s) of _ increasing _ decreasing _ increasing _X decreasing
f. If the variable "SLK 4" were increased by 10, X1 would increase X decrease by <u>18.75</u> STANDARD golf bags/quarter.
g. If the variable "SLK 4" were increased by 10, X2 would <u>X</u> increase _ decrease by <u>13.12</u> DELUXE golf bags/quarter.
h If a pivot were to be performed to enter the variable SLK4 into the basis, then according to the

h. If a pivot were to be performed to enter the variable SLK4 into the basis, then according to the "minimum ratio test", the value of SLK4 in the resulting basic solution would be approximately

$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c } & 0.2 \\ \hline & 111.6 \\ \hline & 111.6 \\ \hline & 0.2 \end{array} $	$ _ \frac{540}{1.875} \\ _ \frac{1.875}{540}$	$\frac{ \underline{X} ^{0.141}}{ \underline{X} ^{-18}}$
	insufficient inf	formation available	

i. If the variable SLK 4 were to enter the basis, then the variable <u>SLK5</u> will leave the basis.