

Mama's Kitchen Decision variables
$\mathrm{Xi}=$ the $\#$ of employees who start to work on $\mathrm{i}^{\text {th }}$ shift. $(\mathrm{i}=1,2, \ldots, 6)$

LP Formulation

Frank and Ernest

ODennis Bricker
Dept of Mechanic
Dept of Mechanical \& Industrial Engineering
The University of Iowa
"Mama's Kitchen" serves from 5:30 a.m. each morning until 1:30 p.m. in the afternoon.

Tables are set and cleared by busers working 4-hour shifts beginning on the hour
from 5:00 a.m. (shift \#1) through 10:00 a.m. (shift \#6).
Most are college students who hate to get up in the morning, so Mama's pays $\$ \mathbf{9}$ per hour for the 5:00, 6:00, and 7:00 a.m. shifts, and $\$ \mathbf{7 . 5 0}$ per hour for the others.

The manager seeks a minimum cost staffing plan that will have at least a minimum number of busers on duty each hour:

| | 5 am | 6 am | 7 am | 8 am | 9 am | 10 am | 11 am | Noon | 1 pm |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| \#reqd | $\mathbf{2}$ | $\mathbf{3}$ | $\mathbf{5}$ | $\mathbf{5}$ | $\mathbf{3}$ | $\mathbf{2}$ | $\mathbf{4}$ | $\mathbf{6}$ | $\mathbf{3}$ |

OBJECTIVE FUNCTION VALUE

1)	360.000
VARIABLE	VALUE
X1	3.00

3.00000 0.000000 2.000000 . 000000 3.000000 3.000000

SLACK OR SURPLUS 1.000000 0.000000 0.000000 0.000000 2.000000 6.000000 2.000000 0.000000 0.000000

REDUCED COST
0.000000
0.000000
0.000000
0.000000
.000000
. 000000
0.0000000
0.000000
0.00000

DUAL PRICES
0.000000
0.000000
-6.000000
-30.000000
0.000000
0.000000
0.000000
30.000000
0.000000

Mama's Kitchen

LINGO model with sets

```
MODEL: ! Mama's Kitchen;
SETS:
    HOUR /1..9/: RQMT;
    SHIFT /1..6/: COST, X;
ENDSETS
DATA:
    RQMT = }\begin{array}{llllllllll}{2}&{3}&{5}&{5}&{3}&{2}&{4}&{6}&{3;}
    COST = 36 36 36 30 30 30;
ENDDATA
MIN = @SUM(SHIFT: COST*X);
@FOR(HOUR(I):
    @SUM(SHIFT(J)| J #GE#1 #AND# J #GE# I-3 #AND# J #LE# I:
                X(J)) >= RQMT(I);
    );
END

Number the hours \(\mathrm{j}=1, \ldots, 9\) where \(\# 1=5 \mathrm{am}, \ldots, \# 9=1 \mathrm{pm}\).
The shifts which are on-duty in hour \(\# i\) are therefore
\[
i, i-1, i-2, \& i-3
\]
where we omit shifts numbered less than \#1.
The mathematical statement of the problem:
\[
\begin{array}{|ll|}
\hline \text { Minimize } & \sum_{j=1}^{6} C_{j} X_{j} \\
\text { subject to } & \\
& \sum_{\substack{j=i-3 \\
j \geq 1}}^{i} X_{j} \geq R_{i}, \quad i=1, \ldots 9 \\
& X_{j} \geq 0, \quad j=1, \ldots 6 \\
\hline
\end{array}
\]```

