

©Dennis Bricker Dept of Mechanical & Industrial Engineering The University of Iowa A firm manufactures **chicken feed** by mixing three different ingredients.

Each ingredient contains **four key nutrients**:

protein, fat, vitamin A, and vitamin B. The amount of each nutrient contained in 1 kilogram of the **three basic ingredients** is:

Ingredient	Protein (grams)	Fat (grams)	Vitamin A (units)	Vitamin B (units)
1	25	11	235	12
2	45	10	160	6
3	32	7	190	10

The costs per kg of Ingredients 1, 2, and 3 are \$0.55, \$0.42, and \$0.38, respectively.

Each kilogram of the feed must contain

- □ *at least* 35 grams of protein,
- □ a *minimum* of 8 grams (and a *maximum* of 10 grams) of fat,
- □ *at least* 180 units of vitamin A and
- □ *at least* 9 units of vitamin B.

Formulate an LP model for finding the feed mix that has the minimum cost per kg.

Copyright (c) 2000 by Thaves. Distributed from www.thecomics.com.

Decision variables

X1 = kg. of Ingredient 1 included in mixture X2 = kg. of Ingredient 2 included in mixture X3 = kg. of Ingredient 3 included in mixture

Complete LP Formulation (LINDO)

MIN	0	.55	X1	L + (0.42	22	X2 +	0.3	38 X3			
st												
	25	X1	+	45	X2	+	32	Х3	>=	35	!	Pro
	11	X1	+	10	X2	+	7	Х3	>=	8	!	Min
	11	X1	+	10	X2	+	7	Х3	<=	10	!	Max
	235	X1	+	160	X2	+	190	Х3	>=	180	!	Vit
	12	X1	+	6	X2	+	10	Х3	>=	9	!	Vit
		X1	+		X2	+		Х3	=	1	!	tot
END												

5	1	Protein constraint
8	!	Min Fat constraint
0	1	Max Fat constraint
0	1	Vitamin A constraint
9	!	Vitamin B constraint
1	!	total wt of mixture

OBJE 1)	CTIVE FUNCTION VALUE 0.3986364	
VARIABLE	VALUE	REDUCED COST
X1	0.045455	0.00000
X2	0.272727	0.00000
Х3	0.681818	0.00000
ROW	SLACK OR SURPLUS	DUAL PRICES
2)	0.227273	0.00000
3)	0.00000	-0.034545
4)	2.000000	0.00000
5)	3.863636	0.00000
б)	0.00000	-0.015909
7)	0.00000	0.020909

The minimum cost mixture costs \$0.398/kg and consists of 0.045 kg of Ingredient 1, 0.273 kg of Ingredient 2 and 0.682 kg of Ingredient 3

Which constraints are "tight" or "binding"? Which are "loose"? RANGES IN WHICH THE BASIS IS UNCHANGED:

		OBJ COEFFICIENT RANG	GES
VARIABLE	CURRENT	ALLOWABLE	ALLOWABLE
	COEF	INCREASE	DECREASE
X1	0.550000	INFINITY	0.116667
X2	0.420000	0.087500	0.380000
X3	0.380000	0.126667	0.350000
		RIGHTHAND SIDE RANG	ES
ROW	CURRENT	ALLOWABLE	ALLOWABLE
	RHS	INCREASE	DECREASE
2	35.000000	0.227273	INFINITY
3	8.00000	2.000000	0.250000
4	10.00000	INFINITY	2.000000
5	180.000000	3.863636	INFINITY
6	9.00000	0.068493	0.333333
7	1.000000	0.017241	0.003453

LINGO model:

SETS:

INGREDIENT /1...3/: PROTEIN, FAT, VITA, VITB, COST, X; ENDSETS

```
Cheech
Fee
DATA:
   PROTEIN = 25 45 32;
   FAT = 11 \ 10 \ 7;
   VITA = 235 \ 160 \ 190;
   VITB = 12 \ 6 \ 10;
   COST = 0.55 \ 0.42 \ 0.38;
ENDDATA
MIN = @SUM(INGREDIENT: COST*X);
   @SUM(INGREDIENT: PROTEIN * X) >= 35; ! minimum protein ;
   @SUM(INGREDIENT: FAT * X) >= 8;  ! minimum fat ;
   @SUM(INGREDIENT: FAT * X) <= 10;    ! maximum fat ;</pre>
   @SUM(INGREDIENT: VITA * X) >= 180; ! minimum vitamin A ;
   @SUM(INGREDIENT: VITB * X) >= 9;  ! minimum vitamin B ;
   @SUM(INGREDIENT: X) = 1 ; ! total weight = 1 kq;
END
```

Suppose that a new ingredient has become available with the following characteristics:

Protein	2.2%
Fat	0.9%
Vitamin A (units/kg)	200
Vitamin B (units/kg)	5
Cost (\$/kg)	\$0.36

- Modify the LINGO model in order to consider this ingredient.
- Is the solution changed?