Sensitivity Analysis in LP.

During each 6-hour period of the day, the Bloomington Police Department needs at least the number of police officers shown below:

$\#$	Time Period	\# of Officers Required
1	12 midnight- 6 a.m.	12
2	6 a.m. -12 noon	8
3	12 noon -6 p.m.	6
4	6 p.m. -12 midnight	15

Officers can be hired to work either 12 consecutive hours or 18 consecutive hours. Officers are paid $\$ 12$ per hour for each of the first 12 hours a day they work, and are paid $\$ 18$ per hour for each of the next 6 hours they work in a day. The city wishes to minimize the cost of meeting Bloomington's daily police requirements.

Number the four 6-hour time intervals by integers $1,2,3, \& 4$. Define decision variables
$\mathrm{X}_{\mathrm{t}}=$ number of officers assigned to 12 -hour shift beginning in time interval $\mathrm{t}(\mathrm{t}=1,2,3,4)$
$\mathrm{Y}_{\mathrm{t}}=$ number of officers assigned to 18 -hour shift beginning in time interval $\mathrm{t}(\mathrm{t}=1,2,3,4)$
Thus, for example, Y_{3} is the number of officers who begin their shift at noon and complete their shift at 6 a.m. the following morning.

Ignoring the restriction that the number of officers for each shift must be integer-valued and solving the problem as an ordinary LP, LINDO gives us the following solution, which happens to satisfy the integer restrictions:

```
MIN 144 X1 + 144 X2 + 144 X3 + 144 X4 + 252 Y1 + 252 Y2 + 252 Y3 + 252 Y4
    SUBJECT TO
                    2) }\textrm{X}1+\textrm{X}4+\textrm{Y}1+\textrm{Y}3+\textrm{Y}4>= 1
                    3) }\textrm{X1}+\textrm{X}2+\textrm{Y}1+\textrm{Y}2+Y4 >= 8
                    4) X2 + X3 + Y1 + Y2 + Y3 >= 6
                    5) X3 + X4 + Y2 + Y3 + Y4 >= 15
    END
```

 OBJECTIVE FUNCTION VALUE
 1) 3132.000

X1

X2

X3

X4

Y1
Y2 Y3 Y4
ROW
2)
-. 000000 -36.000000
3) -. 000000 -108.000000
4) -.000000 -36.000000
5) -. $000000 \quad-108.000000$

RANGES IN WHICH THE BASIS IS UNCHANGED:
OBJ COEFFICIENT RANGES

VARIABLE		CURRENT	ALLOWABLE		ALLOWABLE				
		COEF	INCREASE		DECREASE				
X1	144	. 000000	. 000000		36.000000				
X2	144	. 000000	INFINITY		.000000				
X3	144	. 000000	. 000000		. 000000				
X4	144	. 000000	. 000000		. 000000				
Y1	252	. 000000	INFINITY		72.000000				
Y2	252	. 000000	. 000000		72.000000				
Y3	252	. 000000	INFINITY		72.000000				
Y4	252	. 000000	INFINITY		. 000000				
RIGHTHAND SIDE RANGES									
ROW		CURRENT	ALLOWABLE		ALLOWABLE				
		RHS	INCREASE		DECREASE				
2		. 000000	5.000000		1.000000				
3		. 000000	1.000000		5.000000				
4		. 000000	5.000000		. 500000				
5		. 000000	1.000000		5.000000				
THE TABLEAU									
Row	(BASIS)	X1	X2	X3	X4		Y1		Y2
1	ART	. 000	. 000	. 000	. 000	7	72.000		. 000
2	X1	1.000	1.000	. 000	. 000		2.000		. 000
3	X4	. 000	-1.000	. 000	1.000	-	-1.000		. 000
4	Y2	. 000	. 000	. 000	. 000		-1.000		. 000
5	X3	. 000	1.000	1.000	. 000		2.000		. 000
ROW	Y3	Y4	SLK 2	SLK 3	SLK	4	SLK	5	
1	72.000	. 000	36.000	108.000	36.0	000	108.	. 000	-3132.000
2	1.000	. 000	-1.000	. 000	-1.00	000		. 000	3.000
3	. 000	1.000	. 000	. 000		000	-1.	. 000	9.000
4	-1.000	1.000	1.000	-1.000		000	-1.	. 000	5.000
5	2.000	-1.000	-1.000	1.000	-2. 0	000		. 000	1.000

1. If the officers who work a 12 -hour shift from midnight to noon were to receive a $\$ 1 /$ hour raise, the number assigned to this shift would
a. increase
c. remain the same
e. $N O T A$
b. decrease
d. insufficient info. given
2. If all officers who work an 18 -hour shift were to receive a $\$ 1 /$ hour raise, the number of officers working these shifts would
a. increase
c. remain the same
e. NOTA
b. decrease
d. insufficient info. given
3. The LP problem above has
a. exactly one optimal sol' n
c. multiple solutions
e. insufficient info. given
b. a degenerate solution
d. no optimal solution
f. NOTA
4. Reducing the requirement for officers working during the midnight- 6 a.m. period by two (from the current 12 to 10) would lower the total cost by \qquad
5. Increasing the requirement for officers working during the midnight-6 a.m. period by two (from the current 12 to 14) would increase the total cost by \qquad
6. Increasing the requirement for officers working during the midnight-6 a.m. period by two (from the current 12 to 14) would be equivalent to
a. increasing slack variable SLK 2 by two units.
b. increasing surplus variable SLK 2 by two units.
c. decreasing slack variable SLK_2 by two units..
d. decreasing surplus variable SLK_2 by two units.
e. NOTA
7. Using substitution rates and your answer in (6), determine the change in the basic variables resulting from an increase of one person in the requirement during the midnight-6 a.m. period:

8. Suppose that it were required that one officer be assigned an 18 -hour shift from noon to $6 \mathrm{a} . \mathrm{m}$. The effect on the total cost would be

	increase	decrease	amount
Cost	[]	[]	by

The effect on the variables in the current solution would be
increase decrease amount

X1
X 2
X4
Y2

by \qquad
by \qquad
by \qquad

Frank and Ernest

Copyright (c) 1997 by Thaves. Distributed from www.thecomics.com.

