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[1] Two multivariate data analysis methods, partial least square (PLS) and positive matrix
factorization (PMF), were used to analyze aerosol size distribution data and composition
data. The relationships between the size distribution data and composition data were
investigated by PLS. Three latent variables summarized chemical composition data and
most variations in size distribution data especially for large particles and proved the
existence of the linearity between the two data sets. The three latent variables were
associated with traffic and local combustion sources, secondary aerosol, and coal-fired
power plants. The size distribution, particle composition, and gas composition data were
combined and analyzed by PMF. Source information was obtained for each source using
size distribution and chemical composition simultaneously. Eleven sources were
identified: secondary nitrate 1 and 2, remote traffic, secondary sulfate, lead, diesel traffic,
coal-fired power plant, steel mill, nucleation, local traffic, and coke plant.
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1. Introduction

[2] Multivariate receptor models are widely used in
source apportionment of airborne particles [Henry, 1997,
2002; Hopke, 2003]. The measured chemical composition
data from the samples collected at the receptor site form a
matrix and this matrix can then be analyzed by UNMIX
[Henry, 2003], PMF [Paatero, 1997] or other techniques to
obtain two matrices representing source contribution and
source profile, respectively. Recently, efforts have been
made to use the methods to analyze size distribution data
to identify sources [Ruuskanen et al., 2001; Wahlin et al.,
2001; Kim et al., 2004; Zhou et al., 2004a, 2005].
[3] Even over a short distance (or transit time), there can

be substantial changes in the size distributions of the
particles emitted [Zhu et al., 2002a, 2002b, 2004]. However,
for the same location/transit time, the size distribution is

very similar. If the size distribution coming from a source
does not vary much with time, then the number concentra-
tion series measured at the receptor site have a linear
relationship with the number contribution from all sources
and also with their mass contributions. A previous applica-
tion of multivariate receptor model with size distribution
data [Zhou et al., 2004a] has indicated that the number
contribution of a source can be converted to its volume
(mass) contribution by multiplying a constant determined
by its size distribution profile.
[4] If there are linear relationships between the number

concentrations and mass concentrations, it will be useful to
combine the size distribution data and chemical composi-
tion data into a combined multivariate analysis. The source
characteristics in both size distributions and chemical com-
positions may be obtained simultaneously and a better
understanding of the source-receptor relationship will be
provided.
[5] In this study, a small data set that includes both size

distribution and composition data from the Pittsburgh Air
Quality Study (PAQS) was analyzed by partial least squares
(PLS) and positive matrix factorization (PMF). PLS is used
to investigate the interrelationships between the number
concentrations of all size intervals and the mass concen-

JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 110, D07S18, doi:10.1029/2004JD005050, 2005

1Now at Providence Engineering and Environmental Group LLC, Baton
Rouge, Louisiana, USA.

2Now at Department of Chemical and Biochemical Engineering,
University of Iowa, Iowa City, Iowa, USA.

Copyright 2005 by the American Geophysical Union.
0148-0227/05/2004JD005050$09.00

D07S18 1 of 14



trations of all chemical species. Only if the PLS analysis can
find linear relationships between the two data sets, can the
two types of data can reasonably be combined and analyzed
with a two-way receptor model. The results of the PMF
analysis will be compared with the results in the work of
Zhou et al. [2004b].

2. Data

[6] All the data used in this study were measured at Pitts-
burgh Supersite (latitude 40.4395, longitude �79.9405) on
16, 17, 18, 23 and 24 July 2001. The Pittsburgh Supersite
was located in a park, around 6 miles to the east of the city
center. The interstate highway, I376, extending from west to
east, is around 1 to 2 km to the south of the site. There are
secondary streets and minor roads rather close (<1 km) to the
site. These days were chosen during the July 2001 intensive
since there were complete and simultaneous measurements
of both particle size distributions and chemical compositions
only on these days. In particular, there was measurement of
elemental species with high temporal resolution. Although
these days may not represent the full month, the results will
give us insights into the relationship between the size
distributions and compositions of the aerosol in Pittsburgh
area, and will also be useful in more completely understand-
ing the prior size distribution analyses [Zhou et al., 2004a,
2005]. The size distribution data were obtained from two
scanning mobility particle spectrometers (SMPS) and an
aerodynamic particle sampler (APS) with 15 min resolution.
Above 583 nm, the data used in this study represent
electrical mobility diameter inferred from their aerodynamic
mobility and estimated density [Khlystov et al., 2004]. The
samples were collected at 25% relative humidity and ‘‘dry’’
particle distributions were obtained [Stanier et al., 2004].
[7] The original size distribution data include 165 loga-

rithmically even-spaced intervals from 0.003 mm to 2.5 mm.
Every five consecutive size bins were combined into one
and 33 new size intervals were produced [Zhou et al.,
2004a]. The 15 min number concentrations were averaged
to 30 min and 240 samples were produced. The detailed
description of the measurement of size distributions at
Pittsburgh Supersite can be found elsewhere [Stanier et
al., 2004]. On 24 July there was a regional nucleation event
with particle growth phenomenon and the number concen-
tration data of that day were processed by the method
introduced by Zhou et al. [2005].
[8] The composition data of PM2.5, including both parti-

cle phase and gas phase, are the same as was used before in

a multi time factor analysis [Zhou et al., 2004b] except that
all species with sampling period longer than 30 min, such as
organic carbon/elemental carbon (OC/EC), were excluded
in this study and all the concentrations used in this work are
30 min average. The missing values were replaced by the
regressed values obtained in our previous studies [Zhou et
al., 2004b, 2005]. The aerosol composition data set includes
sulfate and nitrate data obtained by continuous instruments
of Aerosol Dynamics Inc. (ADI) [Stolzenburg and Hering,
2000] and metal species measured by the Semicontinuous
Elements in Aerosol System (SEAS) [Kidwell and Ondov,
2001]. The complete description of all the measurement
techniques can be found in the work of Wittig et al. [2003,
2004]. Table 1 summarizes the sizes and species that have
been used as well as the number of missing values.

3. PLS

3.1. Method

[9] PLS is a basic tool of chemometrics for analyzing
data with strongly collinear, noisy, and numerous X varia-
bles and simultaneously multiple response variables [Wold
et al., 2001]. For this analysis, we use X to stand for
composition data and Y for size distribution data, where
X 2 Rm�n and Y 2 Rm�p with m being the number of
samples, n is the number of chemical species and p is the
number of size intervals. The data in X and Y have been
standardized from their original values so that each column
vector in both matrices has a mean of 0 and a variance of 1.
The model equations are as following:

X ¼ TP0 þ E ð1Þ

Y ¼ UC0 þ D ð2Þ

Y ¼ TC0 þ H ; ð3Þ

where T and U are score matrices, P and C are loading
matrices, and E, D and H are residual matrices. In
equations (1) and (2), T and U summarize the data in the X
and Y matrices, respectively. Each of the column vectors in
T, ti, is called a latent variable (LV) that can be thought to
be caused by a source or a source group, and so does the
column vector in U, ui. If T and U are very close, then T
can also be used to explain Y and even to predict Y as
indicated by equation (3). The above model is solved by
the nonlinear iterative partial least squares (NIPALS)

Table 1. Missing Value Number (MN) of All Sizes and Speciesa

MN Species MN Species MN Size, mm MN Size, mm MN Size, mm

9 Se 9 sulfate 24 0.168 29 0.0233 18 0.0032
9 Zn 0 nitrate 24 0.202 29 0.0279 18 0.0039
4 O3 9 Al 24 0.242 29 0.0334 18 0.0046
2 NO 61 As 24 0.289 29 0.0399 18 0.0055
2 NOx 9 Cd 24 0.3461 27 0.0478 18 0.0066
52 SO2 9 Cr 24 0.414 26 0.0573 19 0.0079
1 CO 9 Cu 24 0.496 24 0.068 20 0.0095
3 PM2.5 9 Fe 6 0.626 23 0.082 22 0.0113

9 Mn 8 0.898 32 0.098 25 0.0136
9 Ni 8 1.286 28 0.118 25 0.0163
9 Pb 8 1.843 25 0.141 29 0.0194

aThe total sample number is 240.
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algorithm described by Wold et al. [2001]. Introductions to
PLS are given in the work of Manne [1987] and Jong
[1993]. An intuitive understanding of PLS but not a strict
mathematical description can be provided as follows. The
latent variables t and u in PLS analysis try to reproduce
the variance in X and Y, respectively, and at the same time,
each pair of t and u try to maximize their similarity
(covariance) to each other. The similarities between t and u
indicate similar latent structures in X and Y. For this
specific study, similar t and u suggest they are both
controlled by the same source or source group.

3.2. Results and Discussion

[10] Table 2 shows the correlation coefficients for each
pair of latent variables (LV), ti and ui. After the first three
latent variables, the correlations become poor, suggesting
that there is no further relationships between the residual
matrices. We define the two variables Rx and Ry:

Rx ¼ 1� var Eð Þ=var Xð Þ ð4Þ

Ry ¼ 1� var Hð Þ=var Yð Þ; ð5Þ

where var means variance. These two variables describe
how much of the variance has been explained by the latent
variables. As indicated in Table 3, when using three LVs,
most of the variance in the X matrix has been explained,
but much less of the variance in the Y matrix has been
explained. This situation may suggest that the linear
relationships amongst the chemical species are better than
those amongst the sizes so that the size distribution data
have larger residuals. Another reason is that number
concentrations of all sizes were used in Y matrix, but not
all chemical species were included in X matrix. Since

some important species were not included in X matrix,
such as OC/EC, some number concentrations in Y matrix
will not be explained without those chemical species that
characterize them. This is also one reason that PLS can
identify less sources than PMF. Most of the variance of
the small particles in the Y matrix is not explained since
the small particles have little mass contribution. Thus the
chemical species reflect the mass concentrations rather
than the number concentrations. If they have no unique
marker species, they only produce small variations in X
matrix and hence are not summarized by the latent
variables. This phenomenon also supports our prior results
showing very weak correlations between number concen-
tration and mass concentration for sources dominated by
smallest sizes and largest number concentration [Zhou et
al., 2004a, 2005].
[11] Figure 1 shows the loadings of the first LV (the first

column vectors of P and C). When the correlation coefficient
between the LV score and the concentration series of a size
interval or a species is over 0.7, a black bar is used to denote
that value. The first LV (LV1) explains most of the variations
of nitrate, NO, NOx, and CO as well as several metal
elements indicating emissions from traffic and other point
combustion sources like the coke plant in the south. In our
previous study [Zhou et al., 2004b], As, Cd and Mn are
associated with point industrial sources such as metal work-
ing, and Zn was thought to be from traffic in our previous
multi time analysis [Zhou et al., 2004b]. The size range of the
first LV is wide, from 10 nm up to 200 nm, and this size range
is also found to be related to traffic and other point sources by
the analyses with only size distribution data [Zhou et al.,
2004a, 2005]. The high loadings between 1 to 2 mm are
consistent with the volume size distribution profiles of the
traffic and combustion sources [Zhou et al., 2004a].
[12] The second LV (LV2) is mostly associated with

sulfate and the size range 0.3 to 0.8 mm as indicated in
Figure 2. These are particles from distant sources, converted
from the precursor SO2 via photochemical reactions during
the transport [Zhou et al., 2004a, 2005].
[13] The third LV (LV3) also explains some sulfate but

more SO2, as shown in Figure 3 and Table 4. The coal-fired
power plants within 100 km from the receptor site are the
probable sources. Because of the short distance, most of the
SO2 cannot be converted during the transport. The trimodal
distribution implied by the size loadings are most likely
caused by the conversions when the plume traveled from
the source to the receptor. The newly formed particles are
small while the aged ones are large. Since the growth of the
particles is susceptible to meteorological and other condi-

Table 3. Rx and Ry of All Sizes and Species

Rx Species Rx Species Ry Size, mm Ry Size, mm Ry Size, mm

0.45 Se 0.84 sulfate 0.62 0.168 0.26 0.0233 0.14 0.0032
0.70 Zn 0.81 nitrate 0.63 0.202 0.28 0.0279 0.23 0.0039
0.71 O3 0.13 Al 0.67 0.242 0.24 0.0334 0.20 0.0046
0.76 NO 0.59 As 0.75 0.289 0.18 0.0399 0.14 0.0055
0.89 NOx 0.71 Cd 0.69 0.3461 0.21 0.0478 0.04 0.0066
0.55 SO2 0.44 Cr 0.63 0.414 0.22 0.0573 0.07 0.0079
0.71 CO 0.63 Cu 0.61 0.496 0.40 0.068 0.14 0.0095

0.34 Fe 0.58 0.626 0.30 0.082 0.21 0.0113
0.74 Mn 0.49 0.898 0.46 0.098 0.31 0.0136
0.15 Ni 0.64 1.286 0.39 0.118 0.29 0.0163
0.46 Pb 0.77 1.843 0.58 0.141 0.31 0.0194

Table 2. Correlations of Each Pair of Latent Variables u and v

Correlation
Coefficient LV

0.80 1
0.85 2
0.71 3
0.60 4
0.51 5
0.51 6
0.37 7
0.38 8
0.42 9
0.27 10
0.36 11
0.34 12
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tions, the linearity between the number concentration and
mass concentration is worse than for the first two LVs.

4. PMF

4.1. Method

[14] A two way receptor model was solved by PMF, an
explicit least squares regression tool developed by Paatero
[1997]. The model equation is:

X ¼ GF þ E; ð6Þ

or in the elemental form,

xij ¼
Xp
k¼1

gik fkj þ eij; ð7Þ

Figure 1. Loadings of the first LV for (top) chemical species and (bottom) sizes.
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where X is the matrix of observed data, the element xij is the
concentration value of the ith sample at the jth size interval
or species. G and F are respectively the source contributions
and source profiles to be estimated. E is a matrix of
residuals.

[15] The residual sum of squares (Q) is defined by
equation (8) and minimized by finding the optimal F and G.

Q ¼ X � GFð Þ
S

����
����

����
����
2

F;G

¼
X
i

X
j

eij

sij

� �2

: ð8Þ

Figure 2. Loadings of the second LV for (top) chemical species and (bottom) sizes.
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The uncertainties s were computed based on the measure-
ment errors by equation (9):

sij ¼ sij þ C3 max xij
�� ��; yij

�� ��� �
; ð9Þ

where yij is the calculated value for xij, sij is the
measurement error, and C3 is a dimensionless constant

value, 0.08 in this study. The estimation of the measurement
errors of size distribution data were based on the
combination of size bins and the detailed procedure was
provided in the work of Zhou et al. [2004a]. C3 is used as
the estimation of the relative uncertainties of large values
(see P. Paatero, User’s Guide for positive matrix factoriza-
tion programs PMF2 and PMF3, Part 2: Reference,

Figure 3. Loadings of the third LV for (top) chemical species and (bottom) sizes.
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available by FTP at ftp://ftp.clarkson.edu/pub/hopkepk/
pmf/). FPEAK is a parameter in PMF for controlling
rotations [Paatero et al., 2002]. When the FPEAK value is
positive, the following additional term is included in the
object function Q:

QP ¼ b2
Xp
k¼1

Xn
j¼1

fkj

 !2

; ð10Þ

where b2 corresponds to the FPEAK value. The term defined
above attempts to pull the sum of all the elements of F
toward zero and makes the program do elementary
transformations for F and G by subtracting the F vectors
from each other and adding corresponding G vectors to
obtain a more physically realistic solution. The FPEAK
value was chosen as 0.1 since there was no clearly defined
edges in G space [Paatero et al., 2005].

Table 4. The Correlations of the Latent Variables by PLS With All

Chemical Species

LV1 LV2 LV3

Sulfate �0.26 0.68 0.57
Nitrate 0.83 0.27 �0.22
Al 0.15 �0.09 0.31
As 0.77 0.00 �0.03
Cd 0.76 �0.36 �0.01
Cr 0.40 �0.41 0.35
Cu 0.41 �0.67 0.09
Fe 0.12 0.19 0.53
Mn 0.81 �0.23 0.19
Ni 0.14 �0.13 0.33
Pb 0.36 �0.27 0.51
Se 0.65 0.16 0.04
Zn 0.83 0.13 �0.07
Ozone �0.60 �0.35 0.48
NO 0.83 0.25 �0.07
NOx 0.86 0.31 �0.21
SO2 0.19 �0.03 0.71
CO 0.82 �0.02 �0.20

Figure 4. Source profiles from PMF analysis (secondary nitrate 1, remote traffic, and secondary nitrate 2).
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Figure 5. Source profiles from PMF analysis (secondary sulfate, lead, diesel traffic, and local coal-fired
plant).
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Figure 6. Source profiles from PMF analysis (steel mill, nucleation, local traffic, and coke plant).
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[16] The mass apportionment conditions [Hopke et al.,
1980] are satisfied by re-scaling the source contribution
series and source profiles as shown in equation (11).

xij ¼
XP
p¼1

fip 	
wp

wp

	 gpj ð11Þ

The scaling constants in the above equation, wp, were
determined by regressing PM2.5 mass concentrations (vj)

against the estimated source contributions as indicated in
equation (12).

vj ¼
XP
p¼1

wp 	 gpj ð12Þ

[17] The source profiles include three parts, number
concentrations for all size intervals, mass fractions for
all species and volume concentration for all gases. In
Figures 4–6, for each source profile, the unit of the

Figure 7. Source contributions from PMF analysis.
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vertical axis in each of the three rows, from left to right, is
(number/cm3)/(mg/m3), 1 and ppb/(mg/m3) (for CO, the
unit is ppm/(mg/m3)), respectively.

4.2. Results and Discussion

[18] Eleven factors were found to provide the best solu-
tion. The sources are identified as secondary nitrate 1 and 2,

remote traffic, secondary sulfate, lead, diesel traffic, coal-
fired power plant, steel mill, nucleation, local traffic, and
coke plant. When using an additional factor, the nucleation
factor is separated into two factors and thus, additional
factors were not warranted. With fewer factors, there were
apparently mixed sources or poorly fit variables. The results
will be discussed and compared with our previous PMF

Figure 8. The relationships of source contributions with wind directions.
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analyses of the size distribution data [Zhou et al., 2004a,
2005] and multi time analyses of composition data [Zhou et
al., 2004b].
[19] The major mode of secondary nitrate 1 is at 0.08 mm

as indicated in Figure 4. Figure 7 shows that the source
contribution is high in the early morning when the low
temperature favors the formation of nitrate. These particles
are associated with aged NOx emissions and grow into large
sizes during the transport. In Figure 8, where the scatter plot
of source contribution and corresponding wind directions
are presented, the highest contribution is from southeast.
Nonparametric regression (NPR) was also used to investi-
gate the wind direction effects. In this method, averaged and
smoothed source contributions are plotted against wind

direction, confidential intervals are also given. High values
indicate more transport from that direction. The detailed
description of this method can be found elsewhere [Henry et
al., 2002; Zhou et al., 2004b; Kim and Hopke, 2004] and
will not be repeated here. The NPR results in Figure 9 also
indicates that southeast is the major source direction of
secondary nitrate 1, where two thin lines give the 95%
confidential intervals.
[20] The size range of remote traffic is similar to our

previous results of the size distribution data analysis [Zhou
et al., 2005], where the particles in this size range were
found to be from traffic emissions several miles away or
some other unknown point source emissions. The source
contribution only has high peaks on the afternoon of 16 July

Figure 9. Nonparametric regression (NPR) analysis results for each source. (The unit of the expected
value is mg/m3.)
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when there is much transport. The present species only
explain a small fraction of the total particle mass contribu-
tion and some other species like OC/EC seem to be the
major components. Figure 8 shows the source emission is
from west, the direction of Pittsburgh city center, but the
confidence interval at that direction in Figure 9 is large and
this can be attributed to the short duration and small number
of samples for the high source contribution episode. How-
ever, the major reason to think it as remote traffic is from the
time series in the work of Zhou et al. [2005]. On the basis of
the information from this study, we cannot exclude the
possibility that it is from a point source.
[21] As shown in Figure 4, most particles of secondary

nitrate 2 are at around 10 nm. This source has very high
relative concentrations of NO and NOx and also a very high
fraction of nitrate. This source is associated with fresh NOx

emissions and the particles are formed in the vicinity of the
receptor site and thus they have not much time to grow into
large ones. The source contribution is high around the
morning rush hour, implying the relationship with NOx

emissions from local traffic. Figures 8 and 9 indicate no
clear dominating directions for this source.
[22] The secondary sulfate factor has a strong correlation

with sulfate as shown in Table 5. It is composed of the
largest particles and also has the largest mass contribution.
This source corresponds to LV2 in the PLS analysis. The
particles are formed during transport from distant sources.
Compared with the other sources, this source has the lowest
relative concentration of SO2 around 0.01 ppb/(mg/m3) as
shown in Figure 5, while the relative concentration is 0.1 to
1 ppb/(mg/m3) for the other sources. This situation suggests
that most of the SO2 is from local sources. It is shown in
Figures 8 and 9 that this source seems to be from many
directions.
[23] In our previous work [Zhou et al., 2004b], lead was

found to be from an unidentified source. Table 5 indicates a
strong correlation between the source contribution and lead
concentration series. The lead source here may be a local

point source. Both Figures 8 and 9 indicate that the source is
from southwest, where a metal working plant is located.
[24] Diesel traffic is similar to the traffic source identified

before [Zhou et al., 2004b] and both of them are strongly
correlated with zinc. This source has the highest relative
concentration for NO and NOx as shown in Figure 5, and
also has the highest correlation with NO and NOx as shown
in Table 5. In Figure 7, it can be found that the source
contribution is only high in the early mornings. This
phenomenon can be explained by the fact that the heavy-
duty truck drivers avoid driving in the morning rush hours.
The southeast and south directions indicated in Figures 8 and
9 are the directions of highway I376.
[25] The mode of coal-fired power plant is around 0.1 mm.

This source is corresponding to LV3 in the PLS analysis. Its
particle composition is close to secondary sulfate and it also
explains some sulfate. However, its gas composition and
size distribution profile is different from the secondary
sulfate factor and that enables the separation into two
factors. The dominating direction is between southwest
and south may also include the direction between east and
southeast. Since there are more than one coal-fired power
plants near Pittsburgh area especially in the south and
southwest directions [Zhou et al., 2004a], this source may
not be a single point source.
[26] Nucleation features the smallest particles. The small

mode at 0.1 mm explains most of the related mass
concentration and this mode is probably caused by simul-
taneous condensation with nucleation. The major chemical
component is sulfate and this is consistent with other
theoretical and experimental results on nucleation studies.
The concentration of ozone for nucleation is the highest of
all sources. Obviously, ozone is not a primary emission.
Thus this profile suggests a strong relationship between
ozone as a measure of photochemical activity and nucle-
ation events. The elevated source contribution and ozone
concentration can both be attributed to the increased
photochemical reaction activities around noon as shown

Table 5. Correlations of the Source Contributions by PMF With All Chemical Species

Sulfate Nitrate Al As Cd Cr Cu Fe Mn

Secondary nitrate 1 �0.26 0.61 �0.02 0.42 0.41 0.12 0.24 �0.12 0.42
Remote traffic �0.24 0.09 0.04 0.08 0.19 0.33 0.24 �0.04 0.27
Secondary nitrate 2 �0.10 0.26 0.06 �0.09 0.17 �0.01 0.07 �0.08 0.05
Secondary sulfate 0.77 �0.11 �0.11 �0.34 �0.42 �0.23 �0.47 0.20 �0.50
Lead 0.13 �0.21 0.04 0.15 0.16 �0.17 0.02 �0.06 0.11
Diesel traffic �0.10 0.79 0.02 0.62 0.54 0.09 0.13 0.03 0.65
Local coal-fired plant 0.45 �0.17 0.60 �0.21 �0.20 �0.05 �0.03 0.17 �0.15
Steel mill �0.04 0.43 0.00 0.75 0.24 0.18 �0.02 0.32 0.72
Nucleation 0.09 �0.55 �0.08 �0.34 �0.31 0.01 �0.01 0.06 �0.14
Local traffic �0.01 0.13 0.07 �0.03 0.12 0.16 0.09 0.13 0.13
Coke plant �0.40 0.24 0.24 0.21 0.64 0.88 0.70 0.28 0.48

Ni Pb Se Zn O3 NO NOx SO2 CO

Secondary nitrate 1 �0.11 �0.03 0.34 0.51 �0.51 0.57 0.74 0.17 0.61
Remote traffic 0.03 0.10 0.01 0.14 �0.02 0.09 0.11 0.14 0.32
Secondary nitrate 2 �0.24 �0.01 �0.01 0.11 �0.26 0.30 0.33 0.17 0.18
Secondary sulfate 0.02 �0.34 �0.26 �0.25 0.01 �0.17 �0.17 �0.10 �0.26
Lead 0.11 0.81 �0.07 0.01 0.30 �0.16 �0.20 0.20 �0.21
Diesel traffic 0.00 0.13 0.59 0.94 �0.65 0.75 0.84 �0.01 0.68
Local coal-fired plant �0.08 �0.02 �0.14 �0.18 0.17 �0.21 �0.23 0.40 �0.19
Steel mill 0.15 0.30 0.98 0.57 �0.27 0.58 0.50 0.07 0.37
Nucleation 0.03 0.07 �0.19 �0.35 0.70 �0.34 �0.51 0.18 �0.43
Local traffic �0.01 0.20 0.09 0.08 0.05 0.18 0.13 0.40 0.14
Coke plant 0.43 0.20 0.02 0.21 �0.08 0.24 0.19 0.12 0.44
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in Figure 7. The nucleation source does not have clear
dominating directions.
[27] The size range of local traffic, indicated in Figure 6, is

similar to our previous results [Zhou et al., 2004b], where we
found the particles in this range showed strong diurnal
patterns, including the contribution peak around morning
rush hours and significant weekday/weekend difference.
Figure 7 indicates that the temporal variations of the source
contribution show peaks at morning rush hours. The corre-
lations of the source contribution with the gases (NO, NOx

and CO) are weak as indicated in Table 5 since most of these
gases are emitted from other sources such as diesel traffic.
[28] A coke plant and a steel mill are two sources that

were also found by analyses of composition data. They have
two number modes at 10–20 nm to and 0.1–0.2 mm. In the
analyses of size distribution data [Zhou et al., 2004a, 2005],
the particles with the size range around 0.1 mm were thought
to be from the local combustion sources. This conclusion is
consistent with the presence of the number modes at the
large size while the number modes at 10–20 nm were not
found to be related to point sources by the analysis with
only size distribution data.
[29] The two point sources, coke plant and steel mill, as

well as secondary nitrate 1 and the diesel traffic are included
in LV1. Their size ranges are similar and are thus summa-
rized in one latent variable in the PLS analysis. These
sources explain most variations of NO, NOx and CO.

5. Conclusion

[30] Partial least squares and positive matrix factorization
have been used to analyze aerosol sized distribution data
and composition data together. PLS analyses found there are
linear relationships between the number concentrations of
large sized particles and the mass concentrations of most of
the chemical species. Since the linear relationship between
the two data sets was proved by PLS, PMF can be used for
source apportionment and it can even identify the sources
with small chemical mass concentrations but high number
concentrations caused by small particle sizes, such as
nucleation and local traffic.
[31] The two methods have revealed source information

including both size distribution and chemical composition at
the same time. These results are helpful for understanding
the results by the analysis of size distribution data.
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policy review, and therefore does not necessarily reflect the views of the
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