Data Warehousing and OLAP Technology for Data Mining

Based on the slides developed by J Han and M Kamber

What is Data Warehouse?

- Defined in many different ways, but not rigorously.
 - A decision support database that is maintained separately from the organization's operational database
 - Support information processing by providing a solid platform of consolidated, historical data for analysis.
 - "A data warehouse is a subject-oriented, integrated, time-variant, and nonvolatile collection of data in support of management's decision-making process."—W. H. Inmon
- Data warehousing:
 - The process of constructing and using data warehouses

Data Warehouse—Subject-Oriented

- Organized around major subjects, such as customer, product, sales.
- Focusing on the modeling and analysis of data for decision makers, not on daily operations or transaction processing.
- Provide a simple and concise view around particular subject issues by excluding data that are not useful in the decision support process.

Data Warehouse—Integrated

- Constructed by integrating multiple, heterogeneous data sources
 - relational databases, flat files, on-line transaction records
- Data cleaning and data integration techniques are applied.
 - Ensure consistency in naming conventions, encoding structures, attribute measures, etc. among different data sources
 - E.g., Hotel price: currency, tax, breakfast covered, etc.
 - When data is moved to the warehouse, it is converted.

Data Warehouse—Time Variant

- The time horizon for the data warehouse is significantly longer than that of operational systems.
 - Operational database: current value data.
 - Data warehouse data: provide information from a historical perspective (e.g., past 5-10 years)
- Every important element in the data warehouse contains time, explicitly or implicitly
Data Warehouse—Non-Volatile

- A physically separate store of data transformed from the operational environment.
- Operational update of data does not occur in the data warehouse environment.
- Does not require transaction processing, recovery, and concurrency control mechanisms.
- Requires only two operations in data accessing:
 - Initial loading of data and access of data.

Data Warehouse

- A data warehouse is based on a multidimensional data model which views data in the form of a data cube.
- A data cube, such as sales, allows data to be modeled and viewed in multiple dimensions.
- Dimension tables, such as item (item_name, brand, type), or time/day, week, month, quarter, year.
- Fact table contains measures (such as dollars_sold) and keys to each of the related dimension tables.
- In data warehousing literature, an n-D base cube is called a base cuboid. The top most 0-D cuboid, which holds the highest-level of summarization, is called the apex cuboid. The lattice of cuboids forms a data cube.

Cube: A Lattice of Cuboids

From Tables and Spreadsheets to Data Cubes

- Star schema: A fact table in the middle connected to a set of dimension tables.
- Snowflake schema: A refinement of star schema where some dimensional hierarchy is normalized into a set of smaller dimension tables, forming a shape similar to snowflake.
- Fact constellations: Multiple fact tables share dimension tables, viewed as a collection of stars, therefore called galaxy schema or fact constellation.

Conceptual Modeling of Data Warehouses

Example of Star Schema

Example of Snowflake Schema
Example of Fact Constellation

Example of Star Schema

Multidimensional Data
- Sales volume as a function of product, month, and region

A Sample Data Cube

Cuboids Corresponding to the Cube

Browsing a Data Cube

- Visualization
- OLAP capabilities
- Interactive manipulation