Qualitative Reasoning in Engineering Design

Andrew Kusiak
Intelligent Systems Laboratory
2139 Seamans Center
The University of Iowa
Iowa City, Iowa 52242 - 1527

Tel: 319 - 335 5934 Fax: 319-335 5669
andrew-kusiak@uiowa.edu
http://www.icaen.uiowa.edu/~ankusiak

Outline
• INTRODUCTION
• DEPENDENCY ANALYSIS IN CONSTRAINED DESIGN
 Problem Definition
 Dependency Network
 Design Examples
• QUANTITATIVE REASONING
• SUMMARY

Problem Definition
Types of constraints
Equations: Equations are used to represent engineering constraints, for example, \(F = ma \).
Inequalities: May represent engineering constraints corresponding to, e.g., design specifications or performance measures.
Qualitative constraints: A qualitative constraint represents relations of qualitative nature.
Computer-based procedures: These constraints are implicit and are usually in the form of a computer program that takes certain inputs and produce outputs.
Influence rules: Conditional statements specifying a constraint under certain conditions.

Design Problem Components
Design goals (objectives): A design goal is expressed with design variables and it captures the idea of “best” design.

Decision variables: A designer is allowed to make independent decisions on those variables.

Intermediate variables: The value of an intermediate variable is not directly determined by the designer, but by propagating the values of decision variables and design specifications through a set of constraints.

Design Problem-Solving Process
Specifications

Initial design

Manufacture
Reliability
Testing

Redesign

Analytic Evaluation

Acceptability

No

Yes

Done
Dependency Network

Definition

Dependency network is a four-tuple \(G = (V, E, \Omega, \Psi) \)

where:
- \(V \) is a set of vertices representing inequality constraints and design variables that are classified into three types:
 - \(V_D \): set of decision variables
 - \(V_I \): set of intermediate variables
 - \(V_P \): set of design goals
- \(E \) is a set of directed edges, a subset of \(V \times V \)
- \(\Omega \) is the set of qualitative dependencies on arcs
- \(\Psi \) is the set of quantitative dependencies on arcs

Qualitative Dependency

Definition

\[
\delta_{ab} = \begin{cases}
+ & \text{if } \partial a = + \text{ and } \partial b = + \\
- & \text{if } \partial a = + \text{ and } \partial b = - \\
0 & \text{if } \partial a \in \{+, -\}, 0, ? \text{ and } \partial b = 0, \text{ when } \partial a \in \{+, -\}, 0, ? \text{ or } \partial b \notin \Omega
\end{cases}
\]

For \(\delta_{ab} \in \Omega \), where \(a, b \notin V \) and \((a, b) \notin E \)

- \(\delta_{x} = + \) means that variable \(x \) is increasing
- \(\delta_{x} = - \) means that variable \(x \) is decreasing
- \(\delta_{x} = 0 \) means that variable \(x \) remains unchanged

Parallel Inference

Definition

Let \(G = (V, E, \Omega, \Psi) \) be a dependency network. Variables \(a, b, c \in V \) and \(\delta_{ac}, \delta_{bc} \in \Omega \), where \(a \) and \(b \) are directly incident to variable \(c \), and \(a \) and \(b \) are not directly linked.

The result of parallel inference \(\delta_{ac} \oplus \delta_{bc} \) is as follows:

\[
\begin{array}{cccc}
\delta_{ac} & \oplus & \delta_{bc} & \delta_{ac} \oplus \delta_{bc} \\
+ & - & 0 & ? \\
? & + & 0 & ? \\
0 & 0 & 0 & 0 \\
? & ? & ? & ?
\end{array}
\]

Example: Parallel Inference

\[
\begin{align*}
3a + b &= c \\
3a + 5 &= 14 & (+, + = +) \\
a \land b \lor 3a + 6 &= 12 & (-, + = +) \text{ OR} \\
3(-3) + 6 &= -3 & (-, + = -) \text{ ?}
\end{align*}
\]

Serial Inference

Definition

Let \(G = (V, E, \Omega, \Psi) \) be a dependency network. Variables \(a, b, c \in V \) and \(\delta_{ab}, \delta_{bc} \in \Omega \), where variable \(a \) is incident to variable \(b \), and \(b \) is incident to variable \(c \).

The result of serial inference \(\delta_{ab} \otimes \delta_{bc} \) is as follows:

\[
\begin{array}{cccc}
\delta_{ab} & \otimes & \delta_{bc} & \delta_{ab} \otimes \delta_{bc} \\
+ & - & 0 & ? \\
0 & 0 & 0 & 0 \\
? & ? & ? & ?
\end{array}
\]

Example: Serial Inference

\[
\begin{align*}
a \delta_{ab} & \rightarrow b \delta_{bc} \\
F &= 7a \\
P &= 2.5F
\end{align*}
\]

\[
\begin{align*}
7a &= F \\
2.5F &= P
\end{align*}
\]

from the formulas

\[
\begin{align*}
(a, F) + (F, P) + P & \text{ from the table}
\end{align*}
\]
What is the main benefit of qualitative reasoning?

Generally valid and easy to evaluate relations
Proposition 1

Let \(a \) and \(b \) be two design variables. The relationship between \(a \) and \(b \) is represented as "\(b \propto a^n \)" i.e., \(b \) is approximately proportional to \(a \) to the power of \(n \). The rate of change between \(a \) and \(b \) is expressed as

\[
\frac{\Delta b}{b} = n \frac{\Delta a}{a}
\]

Quantitative Dependency

Definition

Let \(G = (V, E, \Omega, \Psi) \) be a dependency network and variables \(a, b \in V(G) \) and the directed edge \((a, b) \in E(G)\). Quantitative dependency \(\psi_{ab} \) is defined as:

\[
\psi_{ab} = n
\]

where

\[
n = \frac{(\Delta b / b)(a)}{(\Delta a / a)(b)}
\]

Example

\(F = ma \); Nominal values \(F = 20 \), \(a = 5 \)

\[
\psi_{aF} = \frac{\Delta F / F}{\Delta a / a} = \frac{10\% F / F}{10\% a / a} = \frac{2/20}{.5/5} = 1
\]

Example 1: Car design

Constraints related to the performance design perspective

\[
a = \frac{F g}{(W_b + W_m)} \quad F = \frac{2 T r_s}{D} \quad T \propto W_m
\]

- \(a \): acceleration
- \(F \): the force to generate the acceleration required
- \(g \): the gravity acceleration constant
- \(W_b \): the weight of body of the car
- \(W_m \): engine weight
- \(T \): the torque of the engine
- \(r_s \): the gear ratio between the driving shaft and the wheel axle
- \(D \): the wheel diameter.
Constraints imposed by other perspectives

\[g_1 = W_m - W_{m,\text{Lim}} \leq 0 \]
\[g_2 = D_{\text{Lim}} - D \leq 0 \]
\[g_3 = W_{b,\text{Lim}} - W_b \leq 0 \]

- \(W_m \) weight of the engine
- \(W_{m,\text{Lim}} \) upper limit on the engine weight
- \(D \) wheel diameter
- \(D_{\text{Lim}} \) lower wheel diameter limit
- \(W_b \) weight of the car body
- \(W_{b,\text{Lim}} \) lower weight limit of the car body

Dependency network for the car design problem

\[a = \frac{F g}{(W_b + W_m)} \]
\[F = \frac{2 T r_s}{D} \]
\[T \propto W_m \]

In order to increase the acceleration of the car, the following strategies can be used:

1. Increase the value of gear ratio \((r_s)\).
2. Decrease the value of wheel diameter \((D)\). One can set the wheel diameter \((D)\) to its lower limit \((D_{\text{Lim}})\), as variable \(D\) does not influence other constraints.
3. Decrease the value of body weight \((W_b)\) of the car to its lower limit \((W_{b,\text{Lim}})\).

The qualitative dependency between engine weight \(W_m\) and acceleration \(a\) is unknown (?)

\[\delta_{W_m,a} = (\delta_{F,g} \otimes \delta_{T,F} \otimes \delta_{W_m,T}) \otimes \delta_{Y,a} = ? \]

The University of Iowa
Intelligent Systems Laboratory