

Minimum Support Threshold

• The support of an association pattern is the percentage of task-relevant data transactions for which the pattern is true.

Frequent Itemsets

- Suppose *min_sup* is the minimum support threshold.
- An itemset satisfies minimum support if the occurrence frequency of the itemset is greater than or equal to *min_sup*.
- If an itemset satisfies minimum support, then it is a frequent itemset.

Intelligent Systems Laboratory

telligent Systems Laboratory

Strong Rules

• Rules that satisfy both a minimum support threshold and a minimum confidence threshold are called strong.

Intelligent Systems Laboratory

Intelligent Systems Laboratory

Intelligent Systems Laboratory

Association Rule Mining

• Find all frequent itemsets

The University of Iowa

The University of Iowa

क्ति

• Generate strong association rules from the frequent itemsets

Apriori Algorithm (1)

• Apriori algorithm is an influential algorithm for mining *frequent itemsets* for Boolean association rules.

Apriori Algorithm (2)

- Uses a *Level-wise search*, where *k*-itemsets (An itemset that contains *k* items is a *k-itemset*) are used to explore (*k*+1)-itemsets, to mine frequent itemsets from transactional database for Boolean association rules.
- First, the set of frequent 1-itemsets is found. This set is denoted L1. L1 is used to find L2, the set of frequent 2-itemsets, which is used to fine L3, and so on, until no more frequent *k*-itemsets can be found.

Association rule mining process

• Find all *frequent itemsets*:

The Un

The University of Iowa

The University of Iowa

- Each support **S** of these frequent itemsets will at least equal to a pre-determined min_sup (An *itemset* is a subset of items in I, like A)
- Generate *strong association rules* from the frequent itemsets:
 - These rules must be the frequent itemsets and must satisfy min_sup and min_conf.

Examp	e ¹ Apriori Al	gorithm	
TID	List of item_IDs		
T100	I1, I2, I5		
T200	I2, I4	1 14	G
T300	12, 13	1-Itemsets	Sup-count
T400	11, 12, 14		6
T500	I1, I3	12	6
T600	12, 13	I3 I4	2
T700	I1, I3	15	2
T800	11, 12, 13, 15		
T900	I1, I2, I3		
Ł	support (A =	$B = \frac{\#_tuples_containin}{total_\#_}$	g _both _A _ and _B of _tuples
IIIE The Un	iversity of Iowa	Intelligent System	ns Laboratory

	Soluti	on Procedure	
Step 2	Item_ID	Item	Support
	{I1, I2}	Beer, Diaper	3/5
00	{I1, I3}	Beer, Baby powder	-1/5
C2	{I1, I6}	Beer, Milk	2/5
	{I2, I3}	Diaper, Baby powder	2/5
_	{I2, I6}	Diaper. Milk	1/5
	{I3, I6}	Baby powder. Milk	Ð
Step 3	Item_ID	Item	Support
	{I1, I2}	Beer, Diaper	3/5
L2	{I1, I6}	Beer. Milk	2/5
	{12, 13}	Diaper, Baby powder	2/5
The University	of Iowa	Intelligent Sy	stems Laborate

Step 4: I	Solut	ion Procedure t Null, so repeat Step	52
	Item_ID	Item	
	{I1, I2, I3}	Beer, Diaper, Baby powder	
	{11, 12, 16}	Beer, Diaper, Milk	
	(11, 13, 16)	Beer, Baby powder, Milk	
Ļ	(12, 13, 16}	Diaper, Baby powder, Milk]
	C3 =Nu	Ш	
The University	of lowa	a ntelligent Syste	ms Laboratory

		Solution	Proced	lure		
	Step :	5 min_sup=40%	min_con	f=70%		
	Item_ID	Item	Support(A B)	Support A	Confidence	
	I1 I2	Beer Diaper	60%	80%	75%	
	 1_ 6	Beer Milk	40%	80%	50%	
	12 13	Dianer Baby powder	40%	80%	50%	
	I2 I1	Diaper Beer	60%	80%	75%	
	I6 I1	Milk Beer	40%	40%	100%	
	13 12	Baby powder Diaper	40%	40%	100%	
suppor	$\pi(A \Rightarrow B) = \frac{\#}{2}$	tuples_containing_both_A_and_B total_#_of_tuples	<i>confidenc</i> €A⇒E) = <mark>#_tuples_contain</mark> #_tuples_ telligent Systems 1	ning_both_A_ _containing_A _aboratory	and_B

	List of items (item_IDs)			
	Beer(I1), Diaper(I2), B	aby Powder(I3),	Bread(I4), Umbr	ella(I5)
2	Diaper(I2), Baby Powe	Diaper(I2), Baby Powder(I3)		
3	Beer(I1), Diaper(I2), M	Beer(I1), Diaper(I2), Milk(I6)		
4	Diaper(I2), Beer(I1), D	Diaper(I2), Beer(I1), Detergent(I7)		
5	Beer(I1), Milk(I6), Coca Cola (I8)			
Itom ID	T	Support(A P)		Confidence
	Deer Diener	Support(A B)	Support A	75%
	Beer Diaper	40%	80%	50%
11 16	Daan Mille		00.70	0070
11 16 12 13	Beer Milk Diapar Baby powder	40%	80%	50%
11_16 12_13 12_11	Beer Milk Diaper Baby powder Diaper Beer	40% 60%	80% 80%	50% 75%
11_16 12_13 12_11 16_11	Beer Milk Diaper Baby powder Diaper Beer Milk Beer	40% 60% 40%	80% 80% 40%	50% 75% 100%

Solution Procedure

Step 6

min_sup = 40% *min_conf* = 70%

Strong rules	Support	Confidence
11=> 12 Beer=> Diaper	60%	75%
12=> 11 Diaper=> Beer	60%	75%
16 => 11 Milk=> Beer	40%	100%
13 => 12 Baby powder=> Diaper	40%	100%
Baby bowder=> Diaber		
<u>+</u>		

Intelligent Systems Laboratory

Reference

• J. Han, M. Kamber (2001), *Data Mining*, Morgan Kaufmann Publishers, San Francisco, CA.

