Genetic Programming

GP: Overview

- Developed: USA in the 1990’s
- Early names: J. Koza
- Typically applied to:
 - machine learning tasks (prediction, classification…)
- Attributed features:
 - competes with neural nets and alike
 - needs huge populations (thousands)
 - slow
- Special:
 - non-linear chromosomes: trees, graphs
 - mutation possible but not necessary (disputed!)

Introductory Example: Credit Scoring

- Bank wants to distinguish good from bad loan applicants
- Model needed that matches historical data

<table>
<thead>
<tr>
<th>ID</th>
<th>No of children</th>
<th>Salary</th>
<th>Marital status</th>
<th>OK?</th>
</tr>
</thead>
<tbody>
<tr>
<td>ID-1</td>
<td>2</td>
<td>45000</td>
<td>Married</td>
<td>0</td>
</tr>
<tr>
<td>ID-2</td>
<td>0</td>
<td>30000</td>
<td>Single</td>
<td>1</td>
</tr>
<tr>
<td>ID-3</td>
<td>1</td>
<td>40000</td>
<td>Divorced</td>
<td>1</td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Introductory Example: Credit Scoring

- A possible model:
 IF (NOC = 2) AND (S > 80000) THEN good ELSE bad
- In general:
 IF formula THEN good ELSE bad
- Only unknown is the right formula, hence
- Our search space (phenotypes) is the set of formulas
- Natural fitness of a formula: percentage of well classified cases of the model it stands for
- Natural representation of formulas (genotypes) is: parse trees

GP Technical Summary Table

<table>
<thead>
<tr>
<th>Representation</th>
<th>Tree structures</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recombination</td>
<td>Exchange of sub-trees</td>
</tr>
<tr>
<td>Mutation</td>
<td>Random change in trees</td>
</tr>
<tr>
<td>Parent selection</td>
<td>Fitness proportional</td>
</tr>
<tr>
<td>Survivor selection</td>
<td>Generational replacement</td>
</tr>
</tbody>
</table>

Introductory Example: Credit Scoring

IF (NOC = 2) AND (S > 80000) THEN good ELSE bad can be represented by the following tree

```
  AND
    /
   /   |
NOC 2  S
```

80000
Tree Based Representation

- Trees are a universal form, e.g. consider
- Arithmetic formula: $2 \cdot \pi + \left(\frac{x + 3}{5+1} \right)$
- Logical formula: $(x \land \text{true}) \rightarrow ((x \lor y) \lor (z \leftrightarrow (x \land y)))$
- Program:

```plaintext
i = 1;
while (i < 20)
{
    i = i + 1
}
```

Tree Based Representation

- Symbolic expressions can be defined by
 - Terminal set T
 - Function set F (with the arities of function symbols)
- Adopting the following general recursive definition:
 1. Every $t \in T$ is a correct expression
 2. $f(e_1, \ldots, e_n)$ is a correct expression if $f \in F$, arity$(f) = n$ and e_1, \ldots, e_n are correct expressions
 3. There are no other forms of correct expressions
- In general, expressions in GP are not typed (closure property: any $f \in F$ can take any $g \in F$ as argument)
Offspring Creation Scheme

Compare
- GA scheme using crossover AND mutation sequentially (be it probabilistically)
- GP scheme using crossover OR mutation (chosen probabilistically)

Mutation
- Most common mutation: replace randomly chosen subtree by randomly generated tree

Mutation cont'd
- Mutation has two parameters:
 - Probability p_m to choose mutation vs. recombination
 - Probability to choose an internal point as the root of the subtree to be replaced
- Remarkably p_m is advised to be 0 (Koza’92) or very small, like 0.05 (Banzhaf et al. ’98)
- The size of the child can exceed the size of the parent

Recombination
- Most common recombination: exchange two randomly chosen subtrees among the parents
- Recombination has two parameters:
 - Probability p_c to choose recombination vs. mutation
 - Probability to choose an internal point within each parent as crossover point
- The size of offspring can exceed that of the parents
Selection

- Parent selection typically fitness proportionate
- Over-selection in very large populations
 - rank population by fitness and divide it into two groups:
 - group 1: best x% of population, group 2 other (100-x)%
 - 80% of selection operations chooses from group 1, 20% from group 2
 - for pop. size = 1000, 2000, 4000, 8000 x = 32%, 16%, 8%, 4%
 - motivation: to increase efficiency, %’s come from rule of thumb
- Survivor selection:
 - Typical: generational scheme (thus none)
 - Recently steady-state is becoming popular for its elitism

Initialization

- Maximum initial depth of trees D_{max} is set
- Full method (each branch has depth = D_{max}):
 - nodes at depth $d < D_{\text{max}}$ randomly chosen from function set F
 - nodes at depth $d = D_{\text{max}}$ randomly chosen from terminal set T
- Grow method (each branch has depth $\leq D_{\text{max}}$):
 - nodes at depth $d < D_{\text{max}}$ randomly chosen from $F \cup T$
 - nodes at depth $d = D_{\text{max}}$ randomly chosen from T
- Common GP initialisation: ramped half-and-half, where grow & full method each deliver half of initial population

Bloat

- Bloat = "survival of the fattest", i.e., the tree sizes in the population are increasing over time
- Ongoing research and debate about the reasons
- Needs countermeasures, e.g.:
 - Prohibiting variation operators that would deliver "too big" children
 - Parsimony pressure: penalty for being oversized

Problems Involving “Physical” Environments

- Trees for data fitting vs. trees (programs) that are "really" executable
- Execution can change the environment \Rightarrow the calculation of fitness
- Example: robot controller
- Fitness calculations mostly by simulation, ranging from expensive to extremely expensive (in time)
- But evolved controllers are often to very good

Example Application: Symbolic Regression

- Given some points in \mathbb{R}^2, $(x_1, y_1), \ldots, (x_n, y_n)$
- Find function $f(x)$ s.t. $\forall i = 1, \ldots, n : f(x_i) = y_i$
- Possible GP solution:
 - Representation by $F = \{+, -, \cdot, \sin, \cos\}$, $T = \mathbb{R} \cup \{x\}$
 - Fitness is the error $\text{err}(f) = \sum_{i=1}^{n} (f(x_i) - y_i)^2$
 - All operators standard
 - pop.size = 1000, ramped half-half initialisation
 - Termination: n "hits" or 5000 fitness evaluations reached
 (where "hit" is if $|f(x_i) - y_i| < 0.0001$)

Discussion

Is GP:

The art of evolving computer programs?
Means to automated programming of computers?
GA with another representation?